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This Supplementary Appendix extends Theorem 1 to correlated valuations (Section SA.1),

non-identical distributions (Section SA.2), continuous valuations (Section SA.3), and the

case that the seller offers two products in each market (the aggregate market µ̄ being the

uniform distribution over [0,1]n; Section SA.4).

SA.1 Correlated Valuations

Our model in Section I supposes that a consumer’s valuation for one product is statisti-

cally independent of his valuations for other products. Naturally, in certain applications a

consumer’s valuations for different products may be correlated; for instance, books by the

same author, or from the same genre, might be valued similarly.

We present a simple generalization of the model that allows for correlation between

valuations. Replace the definition of the aggregate market µ̄ in (I) by

µ̄(v) = f(v1)
n∏
k=2

(
tδvk−1(vk)+(1− t)f(vk)

)
, ∀v ∈Xn,

where t ∈ [0,1) and δx ∈ ∆X denotes the Dirac measure centered on x ∈ X. Thus, the

valuation vector corresponds to a Markov chain. With probability t, the valuation for

product k coincides with the one for product k− 1; with probability 1 − t, the valuation
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for product k has distribution f , the distribution of the first product. The interpretation

is that adjacent products are similar, so that consumers may have similar valuations. The

correlation between the valuations, captured by t, can be arbitrarily strong; we only exclude

perfect correlation. The baseline model assumed t= 0 (no correlation).

We now show that Theorem 1, as stated in Section II, extends to this model. Lemma 1

and thus the first sentence of the theorem obviously still hold. To prove the second sentence

of the theorem, we only need to show that Lemma 3 still holds.

We present an adapted proof of Lemma 3. The broad idea is as follows. Because the

correlation is imperfect, the aggregate market can still be segmented such that, indepen-

dently for each product k, the distribution of valuations is either equal to a given gi or some

residual. In contrast to the original proof of Lemma 3, the residual now depends on the

valuation for product k−1. We then show that the seller always prefers to offer a product

for which the distribution of valuations is gi.

Proof of Lemma 3. Let (xi, ci) ∈ S̃. Analogously to the proof of Lemma 3 for the original

model, choose λ ∈ (0,1) such that

λgi(x) ≤ tδy(x)+(1− t)f(x), ∀x,y ∈X,

λgi(x) ≤ f(x), ∀x ∈X,

and define h(· | v0) ∈ ∆X, and, for every y ∈X, h(· | y) ∈ ∆X, as

h(· | v0) := 1
1−λ

f − λ

1−λ
gi,

h(· | y) := t

1−λ
δy + 1− t

1−λ
f − λ

1−λ
gi.

Finally, set p∗ := xm if ci = 0; set p∗ := xi if ci = u(xi).

Next, we present a market segmentation τ supported on 2n markets. The markets in

the support of τ are indexed by superscript a ∈ {g,h}n. The notation ζ(ak) will also be

used and means 1 if ak = g and 0 if ak = h. Set

τ(µa) :=
∏
k

(
ζ(ak)λ+(1− ζ(ak))(1−λ)

)
, ∀a ∈ {g,h}n.

2



Market µa is given by

µa(v) :=
∏
k

(
ζ(ak)λgi(vk)+(1− ζ(ak))(1−λ)h(vk | vk−1)

)
τ(µa)

=
∏
k

(
ζ(ak)gi(vk)+(1− ζ(ak))h(vk | vk−1)

)
, ∀v ∈Xn.

Then τ is a market segmentation:

∑
a
τ(µa)µa(v) = f(v1)

n∏
k=2

(
tδvk−1(vk)+(1− t)f(vk)

)
= µ̄(v), ∀v ∈Xn.

Next, consider any market µa. If ak = g for any k ∈ {1, . . . ,n}, then

µa
k(x) =

∑
v:vk=x

µa(v)

=
∑

v:vk=x

∏
k′

(
ζ(ak′)gi(vk′)+(1− ζ(ak′))h(vk′ | vk′−1)

)
=

∑
v1,...,vk−1

∏
k′<k

(
ζ(ak′)gi(vk′)+(1− ζ(ak′))h(vk′ | vk′−1)

)
gi(x)

= gi(x), ∀x ∈X.

Hence,

max
p
p
∑
x≥p

µa
k(x) = max

p
p
∑
x≥p

gi(x) = p∗ ∑
x≥p∗

gi(x) = xi. (SA.1)

In the following, we show that if ak = h for any k ∈ {1, . . . ,n}, then

xi ≥ max
p
p
∑
x≥p

µa
k(x). (SA.2)

For k = 1,

µa
k(x) =

∑
v:vk=x

µa(v)

=
∑

v:vk=x

∏
k′

(
ζ(ak′)gi(vk′)+(1− ζ(ak′))h(vk′ | vk′−1)

)
= h(x | v0).

For µa
k = h(· | v0), (SA.2) holds by Lemma 2.
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So suppose k ∈ {2, . . . ,n}. Let r∗ ∈ {0 . . . ,k− 1} be the number of products such that

ak′ = h for k′ < k and ak′′ ̸= g for k′ < k′′ < k. Then

µa
k(x) =

∑
v:vk=x

µa(v)

=
∑

v:vk=x

∏
k′

(
ζ(ak′)gi(vk′)+(1− ζ(ak′))h(vk′ | vk′−1)

)
=

∑
v1,...,vk−1

∏
k′<k

(
ζ(ak′)gi(vk′)+(1− ζ(ak′))h(vk′ | vk′−1)

)
h(x | vk−1)

=
∑

vk−r∗−1,...,vk−1

e(vk−r∗−1)
 k−1∏
k′=k−r∗

h(vk′ | vk′−1)
h(x | vk−1),

where e ∈ {gi,h(· | v0)}.

We show by induction that

∑
vk−r−1,...,vk−1

e(vk−r−1)
 k−1∏
k′=k−r

h(vk′ | vk′−1)
h(· | vk−1) ∈ ∆X

is equal to (
t

1−λ

)r+1
e+

1−
(

t
1−λ

)r+1

1− t
1−λ

(
1− t

1−λ
f − λ

1−λ
gi

)
∈ ∆X

for all r ∈ N. If r = 0, then
∑
vk−1

e(vk−1)h(· | vk−1) =
∑
vk−1

e(vk−1) t

1−λ
δvk−1 + 1− t

1−λ
f − λ

1−λ
gi

= t

1−λ
e+ 1− t

1−λ
f − λ

1−λ
gi.

Suppose equality holds for a given r ≥ 0. Then equality holds for r+1:

∑
vk−r−2,...,vk−1

e(vk−r−2)
 k−1∏
k′=k−r−1

h(vk′ | vk′−1)
h(· | vk−1)

=
∑

vk−r−2,...,vk−1

e(vk−r−2)
 k−1∏
k′=k−r−1

h(vk′ | vk′−1)
 t

1−λ
δvk−1 + 1− t

1−λ
f − λ

1−λ
gi

= t

1−λ

∑
vk−r−2,...,vk−2

e(vk−r−2)
 k−2∏
k′=k−r−1

h(vk′ | vk′−1)
h(· | vk−2)+ 1− t

1−λ
f − λ

1−λ
gi

= t

1−λ

( t

1−λ

)r+1
e+

1−
(

t
1−λ

)r+1

1− t
1−λ

(
1− t

1−λ
f − λ

1−λ
gi

)+ 1− t

1−λ
f − λ

1−λ
gi

=
(

t

1−λ

)r+2
e+

1−
(

t
1−λ

)r+2

1− t
1−λ

(
1− t

1−λ
f − λ

1−λ
gi

)
.
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We have shown that

µa
k =

(
t

1−λ

)r∗+1
e+

1−
(

t
1−λ

)r∗+1

1− t
1−λ

(
1− t

1−λ
f − λ

1−λ
gi

)
.

So

max
p
p
∑
x≥p

µa
k(x)

= max
p
p
∑
x≥p

( t

1−λ

)r∗+1
e(x)+

1−
(

t
1−λ

)r∗+1

1− t
1−λ

(
1− t

1−λ
f(x)− λ

1−λ
gi(x)

)

≤
(

t

1−λ

)r∗+1
max
p
p
∑
x≥p

e(x)+
1−

(
t

1−λ

)r∗+1

1− t
1−λ

max
p
p
∑
x≥p

(
1− t

1−λ
f(x)− λ

1−λ
gi(x)

)

≤
(

t

1−λ

)r∗+1
xi+

1−
(

t
1−λ

)r∗+1

1− t
1−λ

max
p
p
∑
x≥p

(
1− t

1−λ
f(x)− λ

1−λ
gi(x)

)
.

For any p ∈ {x1, . . . ,xi−1}:

p
∑
x≥p

(
1− t

1−λ
f(x)− λ

1−λ
gi(x)

)
≤ 1− t

1−λ
p− λ

1−λ
p,

implying

p
∑
x≥p

µa
k(x) ≤

(
t

1−λ

)r∗+1
xi+

1−
(

t
1−λ

)r∗+1

1− t
1−λ

1− t−λ

1−λ
p

=
(

t

1−λ

)r∗+1
xi+

(
1−

(
t

1−λ

)r∗+1)
p

≤ xi.

For any p ∈ {xi, . . . ,xm}:

p
∑
x≥p

(
1− t

1−λ
f(x)− λ

1−λ
gi(x)

)
≤ 1− t

1−λ
π0 − λ

1−λ
xi,

implying

p
∑
x≥p

µa
k(x) ≤

(
t

1−λ

)r∗+1
xi+

1−
(

t
1−λ

)r∗+1

1− t
1−λ

1− t−λ

1−λ
xi

= xi.
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Thus, (SA.2) holds.

By (SA.1) and (SA.2), there exists an optimal strategy ρ for the seller with the following

property: for every market µa such that ak = g for some product k, offer such a product

at price p∗.

Lastly, observe that the only market µa with ak ̸= g for all k ∈ {1, . . . ,n} has

τ(µa) = (1−λ)n.

Let πn be the surplus of the seller, and un the consumer surplus, under this market

segmentation and such an optimal strategy. Then

lim
n→∞πn = lim

n→∞(1− (1−λ)n)xi = xi,

lim
n→∞un = lim

n→∞(1− (1−λ)n)
∑
x≥p

gi(x)(x−p∗) = ci.

SA.2 Non-Identical Distributions

Our model in Section I assumes that a consumer’s valuation for any product k ∈ {1, . . . ,n}

is drawn from the same distribution f . For the characterization of feasible surplus pairs in

Theorem 1, f mattered only through π0, the maximum producer surplus without market

segmentation. In this section, we extend our characterization to a more general setting in

which the valuations for different products may be drawn from different distributions.

To work with an infinite sequence of distributions, we impose a lower bound on the

probabilities. Fix some ε∈ (0,1/m). Let F be the subset of distributions e∈ ∆X such that

e(x) ≥ ε, ∀x ∈X. (SA.3)

Throughout in this section, we hold fixed an arbitrary sequence (fl)l∈N of distributions in

F . For any given number of products n ∈ N, replace the definition of the aggregate market

µ̄ in (1) by

µ̄(v) =
∏
k

fk(vk), ∀v ∈Xn,

that is, the valuations for products k = 1, . . . ,n are independently drawn from f1, . . . ,fn.

6



The maximum producer surplus without market segmentation now depends on the

number of products; denote it by

π′
0,n := max

{
max
p
p
∑
x≥p

fk(x), k = 1, . . . ,n
}
.

Define furthermore

π′
0 := sup

n∈N
π′

0,n,

and suppose that there is some x′ ∈X such that π′
0 = x′.

We can now state our generalization of Theorem 1. The only change concerns the

maximum producer surplus without market segmentation.

Theorem SA.1. For every n ∈ N, the set Sn of feasible surplus pairs is contained in

S′
n :=

{
(π,u) ∈ R2 | π ∈ [π′

0,n,xm],u ∈ [0,u(π)]
}
.

Moreover, for every

(π,u) ∈ S′ :=
{
(π,u) ∈ R2 | π ∈ [π′

0,xm],u ∈ [0,u(π)]
}
,

there exists a sequence
(
(πn,un)

)
n∈N

such that (πn,un) ∈ Sn and (πn,un) −→
n→∞ (π,u).

Fix any of the distributions gi used in the proof of Theorem 1. By (SA.3), there exists

for every f ′ ∈ F a distribution h′ ∈ ∆X with εgi + (1 − ε)h′ = f ′. The proof of Theorem

SA.1 is then analogous to the proof of Theorem 1, and therefore omitted. In particular, to

attain a point (π,u) ∈ S′ with π = xi ∈ {x′, . . . ,xm}, decompose each distribution fk into gi
and a residual hk ∈ ∆X, with the same weights ε and 1−ε for each product k.1 As in the

original model, the seller prefers to offer a product for which the consumers’ valuations are

distributed according to gi rather than the residual. In a second step, construct a market

segmentation τ by independently drawing gi or hk for each product k = 1, . . . ,n, again with

the same weights ε and 1−ε for each product. For large n, it is then again almost certain

that the valuations for at least one product are distributed according to gi.

1The weight ε plays the role of the weight λ in Lemma 2.
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SA.3 Continuous Valuations

In this section, given any topological space Y , B(Y ) denotes the Borel σ-algebra, and

∆Y denotes the set of Borel probability measures on Y . We endow ∆Y with the weak*

topology.2

Let now X = [0,1], and let f be an atomless probability measure in ∆X with full

support. The rest of the model is analogous to the model in Section I.

The aggregate market µ̄ ∈ ∆Xn is defined by

µ̄(B1 ×·· ·×Bn) =
∏
k

f(Bk), ∀B1 ×·· ·×Bn ∈
∏
k

B(X).

A market segmentation is a distribution τ ∈ ∆∆Xn of markets µ ∈ ∆Xn that averages to

µ̄: ∫
µ(B1 ×·· ·×Bn)τ(dµ) =

∏
k

f(Bk), ∀B1 ×·· ·×Bn ∈
∏
k

B(X). (SA.4)

We use the notation µk for the kth-marginal of market µ.3

A strategy of the seller is a mapping ρ : ∆Xn × B({1, . . . ,n} ×X) → [0,1] such that

ρ(µ, ·) ∈ ∆({1, . . . ,n} ×X) for all µ ∈ ∆Xn and µ 7→ ρ(µ,{k} ×B) is measurable for all

{k} ×B ∈ B({1, . . . ,n} ×X). Thus, a strategy selects, potentially randomly, a product

k ∈ {1, . . . ,n} to be offered and a price p ∈X to be charged for any market µ ∈ ∆Xn.

The producer surplus under market segmentation τ and strategy ρ is

Πτ (ρ) :=
∫ ∫

pµk([p,1])ρ(µ,d(k,p))τ(dµ),

and the consumer surplus is

Uτ (ρ) :=
∫ ∫ ∫ 1

p
(x−p)µk(dx)ρ(µ,d(k,p))τ(dµ).

We repeatedly use that the consumer surplus can be written as

Uτ (ρ) =
∫ ∫ ∫ 1

p
µk([x,1])dxρ(µ,d(k,p))τ(dµ),

2All probability measures on product spaces in this subsection are uniquely defined by its values on

the products of the Borel σ-algebras (see Aliprantis and Border, 2006, Thms. 4.44 and 10.10). We write

“for all products of Borel sets” rather than “for all Borel sets of the product space” where convenient.
3Thus, µk ∈ ∆X, with µk(B) =

∫
v:vk∈B µ(dv) for all B ∈ B(X).
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using a well-known formula for expected values.4 Strategy ρ∗ is optimal for the seller under

market segmentation τ if ρ∗ ∈ argmaxρΠτ (ρ).

A combination of producer and consumer surplus (π,u) is feasible if there exist a market

segmentation τ and an optimal strategy ρ such that (π,u) = (Πτ (ρ),Uτ (ρ)). For given n,

the set of feasible surplus pairs is denoted by Sn.

For any π ∈ (0,1], define gπ ∈ ∆X by

gπ([0,x]) :=



0 if x ∈ [0,π),

1− π
x if x ∈ [π,1),

1 if x= 1.

(SA.5)

Thus, gπ assigns zero probability to [0,π), and for any given x ∈ [π,1], the set [x,1] has

probability π/x. The probability measure gπ is the analog to gi in the original model. Note

that ∫ 1

p
pgπ(dv) = pgπ([p,1]) =


p if p ∈ [0,π),

π if p ∈ [π,1],
(SA.6)

analogous to property (2) of the distributions {gi}mi=1 in the original model.

Lastly, define

u(π) :=
∫ 1

π
gπ([x,1])dx=

∫ 1

π
π/xdx= −π lnπ, ∀π ∈ (0,1],

π0 := max
p
pf([p,1]),

and the set

S :=
{
(π,u) ∈ R2 | π ∈ [π0,1],u ∈ [0,u(π)]

}
.

We now show that Theorem 1, as stated in Section II, extends to this model. Our proof

of Theorem 1 uses three lemmas. The first lemma is the analog to Lemma 1.

Lemma SA.1. For every n ∈ N, (π,u) ∈ Sn implies u≤ u(π).

Proof. Let τ be any market segmentation, and let ρ be any strategy that is optimal given

τ such that Πτ (ρ) = π and Uτ (ρ) = u. Define the probability measure h ∈ ∆X by

h(B) :=
∫ ∫

µk(B)ρ(µ,d(k,p))τ(dµ), ∀B ∈ B(X).

4See formula (21.9) in Billingsley (1995).
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By the optimality of ρ, we have for any q ∈ [π,1]
∫ ∫

qµk([q,1])ρ(µ,d(k,p))τ(dµ) ≤
∫ ∫

pµk([q,1])ρ(µ,d(k,p))τ(dµ)

= Πτ (ρ) = π = qgπ([q,1]).

Dividing through by q, we see that gπ first-order stochastically dominates h. Hence,

u =
∫ ∫ ∫ 1

p
µk([x,1])dxρ(µ,d(k,p))τ(dµ)

=
∫ ∫ ∫

µk([x,1])dxρ(µ,d(k,p))τ(dµ)−
∫ ∫ ∫ p

0
µk([x,1])dxρ(µ,d(k,p))τ(dµ)

≤
∫ ∫ ∫

µk([x,1])dxρ(µ,d(k,p))τ(dµ)−
∫ ∫ ∫ p

0
µk([p,1])dxρ(µ,d(k,p))τ(dµ)

=
∫ ∫ ∫

µk([x,1])dxρ(µ,d(k,p))τ(dµ)−π

=
∫ ∫ ∫

µk([x,1])ρ(µ,d(k,p))τ(dµ)dx−π

=
∫
h([x,1])dx−π

≤
∫
gπ([x,1])dx−π

= u(π),

where we used Fubini’s Theorem for the fifth row.

The next lemma is similar to Lemma 3.

Lemma SA.2. Let e,h ∈ ∆X and λ ∈ (0,1) such that

λe(B)+(1−λ)h(B) = f(B) ∀B ∈ B(X), (SA.7)

max
p
pe([p,1]) ≥ max

p
ph([p,1]). (SA.8)

Let p∗ ∈ argmaxp pe([p,1]). There exists a sequence
(
(πn,un)

)
n∈N

such that (πn,un) ∈ Sn

and

(πn,un) −→
n→∞

(
p∗e([p∗,1]),

∫ 1

p∗
e([x,1])dx

)
. (SA.9)

Proof. Fix some n∈N. We present a market segmentation τ supported on 2n markets. As

in the proof of Lemma 3, τ is constructed by independently drawing e or h with probability

λ and 1−λ, respectively, for each product k = 1, . . . ,n.
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Formally, define for every tuple a = (a1, . . . ,an) ∈ {e,h}n a market µa with

µa(B1 ×·· ·×Bn) :=
∏
k

ak(Bk), ∀B1 ×·· ·×Bn ∈
∏
k

B(X).

Using the notation ζ(ak) := λ if ak = e and ζ(ak) := 1−λ if ak = h, set

τ(µa) :=
∏
k

ζ(ak), ∀a ∈ {e,h}n.

Then τ is a market segmentation:∑
a
τ(µa)µa(B1 ×·· ·×Bn) =

∏
k

f(Bk) = µ̄(B1 ×·· ·×Bn), ∀B1 ×·· ·×Bn ∈
∏
k

B(X).

For every market µa, ak = e implies µa
k = e, and ak = h implies µa

k = h.

Next, we describe a strategy ρ as follows:

• For every market µa in the support of τ such that ak = e for some product k, offer

any such product at price p∗.

• For the unique market µa in the support of τ such that ak = h for all products k,

offer product k = 1 at some fixed price p′ ∈ argmaxx ph([x,1]).

• For every market outside of the support of τ , offer product k = 1 at price p′.

We have not specified how ρ selects among products k with ak = e, but this indeterminacy

will not matter. Note furthermore that V is compact and metrizable, which implies that

∆Xn is metrizable (Aliprantis and Border, 2006, Thm. 15.11). Hence, any finite subset of

∆Xn is a Borel set. Because the support of τ is finite, this implies that µ 7→ ρ(µ,{k}×B)

is measurable for all k ∈ {1, . . . ,n} and all B ∈ B(X), as required by the definition of a

strategy. By (SA.7), ρ is optimal.

Lastly, observe that the only market µa with ak = h for all k ∈ {1, . . . ,n} has

τ(µa) = (1−λ)n.

Let πn be the surplus of the seller, and un the consumer surplus, under this market

segmentation and such an optimal strategy. Then

lim
n→∞πn = lim

n→∞(1− (1−λ)n)p∗e([p∗,1]) = p∗e([p∗,1]),

lim
n→∞un = lim

n→∞(1− (1−λ)n)
∫ 1

p∗
e([x,1])dx=

∫ 1

p∗
e([x,1])dx.
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Lemma SA.2 is not directly useful because the probability measures gπ have an atom at

x= 1 whereas f is atomless; thus, f cannot be split into some gπ and some h as in (SA.7).

We will approximate the respective gπ by atomless probability measures. When doing so,

we must furthermore make sure that the seller sets the right price. To this end, we now

state a third lemma.

Fix some π ∈ (0,1), some p ∈ [π,1], and some ϵ ∈ [0,1]. For N ∈ N, let

π = xN0 < xN1 < ... < xNN = 1

be a collection of points in [π,1] of equal distance. For each i= 1, . . . ,N , define

αϵ,Nπ,p (i) := (1− ϵ)gπ([xNi−1,x
N
i ])+ ϵδp([xNi−1,x

N
i ])

f([xNi−1,x
N
i ])

,

where δp ∈ ∆X denotes the Dirac measure centered on p. Let

λNπ,p :=
(

max
ϵ∈[0,1]

i∈{1,...,N}

aϵ,Nπ,p (i)
)−1

(SA.10)

and note that λNπ,p ∈ (0,1) because gπ and δp are probability measures and assign probability

one to [π,1] whereas f assigns probability strictly less than one to [π,1]. For each i =

1, . . . ,N , let furthermore

βϵ,Nπ,p (i) = 1
1−λNπ,p

−
λNπ,p

1−λNπ,p
αϵ,Nπ,p (i).

We now introduce two probability measures in ∆X: the probability measure eϵ,Nπ,p , which

has support [π,1] and is given by

eϵ,Nπ,p ([x,xNi ]) := αϵ,Nπ,p (i)f([x,xNi ]), ∀x ∈ [xNi−1,x
N
i ],∀i= 1, . . . ,N, (SA.11)

and the probability measure hϵ,Nπ,p given by

hϵ,Nπ,p ([0,xi]) := 1
1−λNπ,p

f([0,x]), ∀x ∈ [0,π),

hϵ,Nπ,p ([x,xi]) := βϵ,Nπ,p (i)f([x,xNi ]), ∀x ∈ [xNi−1,x
N
i ],∀i= 1, . . . ,N.

Then, f is a mixture of eϵ,Nπ,p and hϵ,Nπ,p :

λNπ,pe
ϵ,N
π,p (B)+(1−λNπ,p)hϵ,Nπ,p (B) = f(B) ∀B ∈ B(X). (SA.12)
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Lemma SA.3. Let π ∈ (0,1) and p∈ [π,1]. For every ϵ∈ (0,1], let (pϵ,N )N∈N be a sequence

of prices such that

pϵ,N ∈ argmax
x
xeϵ,Nπ,p ([x,1]), ∀N ∈ N.

Then,

lim
ϵ→0

lim
N→∞

pϵ,Neϵ,Nπ,p ([pϵ,N ,1]) = π, (SA.13)

lim
ϵ→0

lim
N→∞

∫ 1

pϵ,N
eϵ,Nπ,p ([x,1])dx=

∫ 1

p
gπ([x,1])dx. (SA.14)

If furthermore π > π0, then

lim
ϵ→0

max
x
xhϵ,Nπ,p ([x,1])< π0, ∀N ∈ N. (SA.15)

Proof. Let êϵπ,p ∈ ∆X be the probability measure given by

êϵπ,p(B) := (1− ϵ)gπ(B)+ ϵδp(B), ∀B ∈ B(X). (SA.16)

To prove (SA.13), we first show

lim
N→∞

pϵ,N = p, (SA.17)

lim
N→∞

eϵ,Nπ,p ([pϵ,N ,1]) = êϵπ,p([p,1]). (SA.18)

Fix some ϵ ∈ (0,1]. For all x ∈ [xNi−1,x
N
i ] and all i= 1, . . . ,N −1,

eϵ,Nπ,p ([x,1]) =
êϵπ,p([xNi−1,x

N
i ])

f([xNi−1,x
N
i ])

f([x,xNi ])+ êϵπ,p([xNi ,1]).

Hence,

lim
N→∞

eϵ,Nπ,p ([x,1]) = êϵπ,p([x,1]), ∀x ∈ [π,1). (SA.19)

It follows that if p < 1, then limN→∞ pϵ,N = p because x 7→ xêϵπ,p([x,1]) is uniquely maxi-

mized at x= p by (SA.6). If p= 1, then limN→∞ pϵ,N = p because

lim
N→∞

xNN−1e
ϵ,N
π,p ([xNN−1,1]) = lim

N→∞
xNN−1ê

ϵ
π,p([xNN−1,1]) = êϵπ,p({1}).

This shows (SA.17).

If pϵ,N ∈ [xNi−1,x
N
i ], then

eϵ,Nπ,p ([pϵ,N ,1]) ≤ eϵ,Nπ,p ([xNi−1,1]) = êϵπ,p([xNi−1,1]) ≤ êϵπ,p

([
pϵ,N − 1−π

N
,1
])
,
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where the last inequality holds because [xNi−1,x
N
i ] has length (1−π)/N . Hence,

limsup
N→∞

eϵ,Nπ,p ([pϵ,N ,1]) ≤ limsup
N→∞

êϵπ,p

([
pϵ,N − 1−π

N
,1
])

≤ êϵπ,p([p,1])

because x 7→ êϵπ,p([x,1]) is upper semicontinuous. On the other hand,

liminf
N→∞

eϵ,Nπ,p ([pϵ,N ,1]) ≥ êϵπ,p([p,1])

because otherwise

liminf
N→∞

pϵ,Neϵ,Nπ,p ([pϵ,N ,1]) = p liminf
N→∞

eϵ,Nπ,p ([pϵ,N ,1])< pêϵπ,p([p,1]),

which contradicts the optimality of pϵ,N . This shows (SA.18). Together, (SA.17) and

(SA.18) imply

lim
N→∞

pϵ,Neϵ,Nπ,p ([pϵ,N ,1]) = pêϵπ,p([p,1]).

Letting ϵ go to zero concludes the proof of (SA.13):

lim
ϵ→0

lim
N→∞

pϵ,Neϵ,Nπ,p ([pϵ,N ,1]) = pgπ([p,1]) = π.

Next, we show (SA.14). For given ϵ ∈ (0,1], the Dominated Convergence Theorem

implies

lim
N→∞

∫ 1

pϵ,N
eϵ,Nπ,p ([x,1])dx =

∫
lim
N→∞

1[pϵ,N ,1](x)eϵ,Nπ,p ([x,1])dx

=
∫

1[p,1](v)êϵπ,p([x,1])dx

=
∫ 1

p
êϵπ,p([x,1])dx

where the second equality holds by (SA.19) and (SA.17). Letting ϵ go to zero yields (SA.14).

Finally, we prove (SA.15). Fix N ∈ N. For any ϵ ∈ (0,1], we have

hϵ,Nπ,p ([x,1]) = 1− 1
1−λNπ,p

f([0,x])< f([x,1]), ∀x ∈ [0,π).

Hence

lim
ϵ→0

max
x∈[0,π]

xhϵ,Nπ,p ([x,1]) ≤ max
x∈[0,π]

xf([x,1]) ≤ π0.
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On the other hand, if x ∈ [xNi−1,x
N
i ], i= 1, . . . ,N −1, then

hϵ,Nπ,p ([x,1]) = 1
1−λNπ,p

f([x,1])−
λNπ,p

1−λNπ,p

(
êϵπ,p([xNi−1,x

N
i ])

f([xNi−1,x
N
i ])

f([x,xNi ])+ êϵπ,p([xNi ,1])
)
.

By the Maximum Theorem,

lim
ϵ→0

max
x∈[xN

i−1,x
N
i ]
xhϵ,Nπ,p ([x,1]) = max

x∈[xN
i−1,x

N
i ]
xh0,N

π,p ([x,1]), ∀i= 1, . . . ,N −1.

Analogously,

lim
ϵ→0

max
x∈[xN

N−1,1]
xhϵ,Nπ,p ([x,1]) = max

x∈[xN
N−1,1]

xh0,N
π,p ([x,1]).

It remains to show that

max
x∈[π,1]

xh0,N
π,p ([x,1])< π0. (SA.20)

Note that if x ∈ {xN0 , . . . ,xNN−1}, then

xe0,N
π,p ([x,1]) = xgπ([x,1]) = π > π0 ≥ xf([x,1])

and thus

e0,N
π,p ([x,1])> f([x,1]).

Because the ratio
e0,N
π,p ([x,xNi ])
f([x,xNi ])

= gπ([xNi−1,x
N
i ])

f([xNi−1,x
N
i ])

is the same for all x ∈ (xNi−1,x
N
i ), i= 1, . . . ,N , it follows that

e0,N
π,p ([x,1])> f([x,1]), ∀x ∈ [π,1].

Using (SA.12), we conclude

h0,N
π,p ([x,1])< f([x,1]), ∀x ∈ [π,1],

and thus

xh0,N
π,p ([x,1])< xf([x,1]) ≤ π0, ∀x ∈ [π,1],

which implies (SA.20).

We are now ready to prove Theorem 1.
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Proof of Theorem 1. The first part of the theorem holds by Lemma SA.1. To prove the

second part, let (π,u) ∈ S. Because the function p 7→
∫ 1
p gπ([x,1])dx is continuous, there

exists a price p ∈ [π,1] such that

u=
∫ 1

p
gπ([x,1])dx.

The function π 7→ u(π) = −π lnπ is continuous. To prove the theorem, we may therefore

assume 1> π > π0, because if for any such π and any uπ ∈ [0,u(π)] there exists a sequence(
(πn,un)

)
n∈N

converging to (π,uπ), then there also exists a sequence converging to (π,u)

for π ∈ {π0,1} and any u ∈ [0,u(π)].

We now apply Lemma SA.3. For every ϵ ∈ (0,1], let (pϵ,N )N∈N be a sequence of prices

such that

pϵ,N ∈ argmax
x
xeϵ,Nπ,p ([x,1]), ∀N ∈ N.

Then by Lemma SA.3,

lim
ϵ→0

lim
N→∞

pϵ,Neϵ,Nπ,p ([pϵ,N ,1]) = π,

lim
ϵ→0

lim
N→∞

∫ 1

pϵ,N
eϵ,Nπ,p ([x,1])dx=

∫ 1

p
gπ([x,1])dx.

To prove the theorem, it therefore suffices to show that for any ϵ below some cutoff and

for any N above some cutoff, there exists a sequence
(
(πn,un)

)
n∈N

such that (πn,un) ∈ Sn

and

(πn,un) −→
n→∞

(
pϵ,Neϵ,Nπ,p ([pϵ,N ,1]),

∫ 1

pϵ,N
eϵ,Nπ,p ([x,1])dx

)
.

Invoking Lemma SA.3, let ϵ be small enough and N big enough such that

pϵ,Neϵ,Nπ,p ([pϵ,N ,1]) ≥ π0 ≥ max
x
xhϵ,Nπ,p ([x,1]).

Then, such a sequence
(
(πn,un)

)
n∈N

exists by Lemma SA.2.

SA.4 Seller Offers Two Products

In this section, we consider the setting of Section SA.3, with f being the Lebesgue measure

on X = [0,1], and assume that the seller can offer two products in each market.
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Let K be the set of all subsets of {1, . . . ,n} that have two elements.5 A strategy of

the seller is a mapping ρ : ∆Xn × B(K ×Xn) → [0,1] such that ρ(µ, ·) ∈ ∆(K ×Xn) for

all µ ∈ ∆Xn and µ 7→ ρ(µ,K ×B) is measurable for all K ×B ∈ B(K ×Xn). Thus, a

strategy selects, for any given market µ ∈ ∆Xn and potentially randomly, a set K ∈ K of

two products to be offered and prices for all products k ∈ {1, . . . ,n}.6 We denote a vector

of prices in Xn by p := (p1, . . . ,pn).

A selection of the consumers is a measurable mapping σ : Xn× K ×Xn× {1, . . . ,n} →

[0,1], where σv,K,p(k) denotes the probability that the consumer buys product k at (v,K,p),

where σv,K,p(k) = 0 for all products k /∈K and

∑
k∈K

σv,K,p(k) ≤ 1.

Thus, a selection selects, potentially randomly, for any vector of valuations v ∈Xn, any set

of offered products K, and any vector of prices p ∈Xn, a product to be purchased, if any.

The producer surplus under market segmentation τ , strategy ρ, and selection σ is

Πτ (ρ,σ) :=
∫ ∫ ∫ ∑

k∈K
σv,K,p(k)pkµ(dv)ρ(µ,d(K,p))τ(dµ),

and the consumer surplus is

Uτ (ρ,σ) :=
∫ ∫ ∫ ∑

k∈K
σv,K,p(k)(vk −pk)µ(dv)ρ(µ,d(K,p))τ(dµ).

A strategy ρ∗ is optimal for the seller under market segmentation τ and selection σ if ρ∗ ∈

argmaxρΠτ (ρ,σ). A selection σ∗ is optimal for the consumers under market segmentation

τ and strategy σ if σ∗ ∈ argmaxσUτ (ρ,σ).

The producer surplus without market segmentation is again denoted by π0. Without

market segmentation, the seller optimally offers any two products; the valuations for the

two products are independently drawn from the uniform distribution on [0,1]; a consumer

optimally buys that product for which the difference between valuation and price is greatest,

5At some points, we make the dependence of K on n clear in the notation and write Kn instead of K.
6Although the seller offers only two products, we assume that she chooses prices for all products in

{1, . . . ,n}. This is to simplify the notation.
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provided the difference is positive.7 By Pavlov (2011, Example 1), it is optimal for the seller

to set the same price for both products in this case, so that

π0 = max
p
p(1−p2) = 2

3
1√
3
. (SA.21)

A combination of producer and consumer surplus (π,u) is feasible if there exist a

market segmentation τ , an optimal strategy ρ, and an optimal selection ρ such that

(π,u) = (Πτ (ρ,σ),Uτ (ρ,σ)). For given n, the set of feasible surplus pairs is again denoted

by Sn.

The other notation is as in Section SA.3. In particular, we use again the set S, the

probability measures gπ, and the function u defined there.

We now show that Theorem 1, as stated in Section II, extends to this model.

SA.4.1 Proof of the First Part of Theorem 1

We wish to show that for every n ∈ N, the set Sn of feasible surplus pairs is a subset of

S =
{
(π,u) ∈ R2 | π ∈ [π0,1],u ∈ [0,u(π)]

}
.

Let n ∈ N and (πn,un) ∈ Sn. By the same arguments as in the original model, it holds that

πn ∈ [π0,1] and un ≥ 0. The following lemma, the analog to Lemma 1, thus concludes the

proof of the first part of Theorem 1.

Lemma SA.4. For every n ∈ N, (π,u) ∈ Sn implies u≤ u(π).

Proof. Let τ be any market segmentation, let ρ be any strategy, and let σ be any selection

such that ρ and σ are optimal and Πτ (ρ,σ) = π and Uτ (ρ,σ) = u.

We first show that
∫ ∫ ∫ ∑

k∈K
σv,K,p(k)1vk≥q(v)µ(dv)ρ(µ,d(K,p))τ(dµ) ≤ gπ([q,1]), ∀q ∈ [π,1]. (SA.22)

7A monopolist’s problem of choosing prices for l > 1 products of which the buyer buys at most one

is known in the literature as the “Bayesian unit-demand pricing problem” (see Chawla, Hartline, and

Kleinberg, 2007). Solutions have been obtained only for special cases (see the literature overviews in Cai

and Daskalakis (2015) and Chen, Diakonikolas, Paparas, Sun, and Yannakakis (2018)).
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By contradiction, suppose that there exists q ∈ [π,1] such that
∫ ∫ ∫ ∑

k∈K
σv,K,p(k)1vk≥q(v)µ(dv)ρ(µ,d(K,p))τ(dµ)> gπ([q,1]).

Let p′ be the vector of prices where p′
k = q for every product k ∈ {1, . . . ,n}. We have

∫ ∫ ∫ ∑
k∈K

σv,K,p(k)1vk≥q(v)µ(dv)ρ(µ,d(K,p))τ(dµ)

≤
∫ ∫ ∫ ∑

k∈K
σv,K,p′(k)1vk≥q(v)µ(dv)ρ(µ,d(K,p))τ(dµ)

since by the optimality of σ,
∑
k∈K

σv,K,p′(k)1vk≥q(v) = 1∃k∈K:vk≥q(v) ≥
∑
k∈K

σv,K,p(k)1vk≥q(v),

∀K ∈ K,∀p ∈Xn,∀v ∈Xn.

Hence,

q
∫ ∫ ∫ ∑

k∈K
σv,K,p′(k)1vk≥q(v)µ(dv)ρ(µ,d(K,p))τ(dµ)

≥ q
∫ ∫ ∫ ∑

k∈K
σv,K,p(k)1vk≥q(v)µ(dv)ρ(µ,d(K,p))τ(dµ)

> qgπ([q,1])

= π.

But then the strategy ρ′ that differs from ρ in that it chooses the price vector p′ for every

market µ results in a strictly higher producer surplus than ρ, contradicting the optimality

of ρ. Hence, (SA.22) holds.

Define now the probability measure h ∈ ∆X by

h([x,1]) =
∫ ∫ ∫ ∑

k∈K
σv,K,p(k)1vk≥x(v)µ(dv)ρ(µ,d(K,p))τ(dµ), ∀x ∈ (0,1]
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and h([0,1]) = 1. By (SA.22), gπ first-order stochastically dominates h. Hence,

u =
∫ ∫ ∫ ∑

k∈K
σv,K,p(k)(vk −pk)µ(dv)ρ(µ,d(K,p))τ(dµ)

=
∫ ∫ ∫ ∑

k∈K
σv,K,p(k)vkµ(dv)ρ(µ,d(K,p))τ(dµ)−π

=
∫
xh(dx)−π

=
∫
h([x,1])dx−π

≤
∫
gπ([x,1])dx−π

= u(π).

SA.4.2 Proof of the Second Part of Theorem 1: Preliminaries

To prove the second part of Theorem 1, we first state auxiliary results.

Let ξ be a probability measure in ∆n, and let K ∈ K. We denote by ξK the probability

measure in ∆X2 defined by

ξK
( ∏
k∈K

Bk
)

:= ξ
( n∏
k=1

Bk
)

where ∏nk=1Bk ∈ ∏n
k=1 B(X) such that Bk = X for every k /∈ K. This extends the notion

of a marginal to two-dimensional marginals. Moreover, we say that a probability measure

ξ ∈ ∆Xn is invariant to permutation if

ξ
( n∏
k=1

Bk
)

= ξ
( n∏
k=1

Bψ(k)
)

for every ∏nk=1Bk ∈∏nk=1 B(X) and every permutation ψ of {1, . . . ,n}.

Lemma SA.5. a) Let ζ,ϕ ∈ ∆X2 and λ ∈ (0,1) such that, for any K ∈ K,

λζ
( ∏
k∈K

Bk
)

+(1−λ)ϕ
( ∏
k∈K

Bk
)

=
∏
k∈K

f(Bk), ∀
∏
k∈K

Bk ∈
∏
k∈K

B(X).

For any n≥ 3, there exist ξn ∈ ∆Xn−2 and γ ∈ ∆Xn such that
n∏
k=1

f(Bk) = (1− (1−λ)n÷2)
∑
K∈K

1
|K|

ζ
( ∏
k∈K

Bk
)
ξn
( ∏
k/∈K

Bk
)

+(1−λ)n÷2γ
( n∏
k=1

Bk
)
, ∀

n∏
k=1

Bk ∈
n∏
k=1

B(X).
(SA.23)
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Moreover, if ζ is invariant to permutation then there exist such ξn,γ with ξn being

invariant to permutation.

b) For every n≥ 4, let Kn ∈ Kn. Let ξn be as in part a) and invariant to permutation.

Then,

lim
n→∞ξnKn

(
B′ ×B′′

)
= f(B′)f(B′′), ∀B′ ×B′′ ∈ B(X)×B(X).

Proof. Part a): We show (SA.23) first for n = 3 and n = 4. Afterwards, we will be able

to show (SA.23) for every n > 4 by induction.

Let n= 3, and fix any ∏nk=1Bk ∈∏nk=1 B(X). Then,

n∏
k=1

f(Bk) =
∑
K∈K

1
|K|

λζ( ∏
k∈K

Bk
)

+(1−λ)ϕ
( ∏
k∈K

Bk
)f(

∏
k/∈K

Bk)

=
∑
K∈K

1
|K|

λζ
( ∏
k∈K

Bk
)
f(
∏
k/∈K

Bk)+(1−λ)ϕ
( ∏
k∈K

Bk
)
f(
∏
k/∈K

Bk)

= (1− (1−λ))
∑
K∈K

1
|K|

ζ
( ∏
k∈K

Bk
)
f(
∏
k/∈K

Bk)+(1−λ)ϕ
( ∏
k∈K

Bk
)
f(
∏
k/∈K

Bk).

Thus, (SA.23) holds for n= 3.

Let now n= 4, and fix any ∏nk=1Bk ∈∏nk=1 B(X). Then,

n∏
k=1

f(Bk) =
∑
K∈K

1
|K|

λζ( ∏
k∈K

Bk
)

+(1−λ)ϕ
( ∏
k∈K

Bk
)λζ( ∏

k/∈K
Bk
)

+(1−λ)ϕ
( ∏
k/∈K

Bk
)

=
∑
K∈K

1
|K|

λζ( ∏
k∈K

Bk
)1

2λζ
( ∏
k/∈K

Bk
)

+(1−λ)ϕ
( ∏
k/∈K

Bk
)

+λζ
( ∏
k/∈K

Bk
)1

2λζ
( ∏
k∈K

Bk
)

+(1−λ)ϕ
( ∏
k∈K

Bk
)

+(1−λ)2 ∑
K∈K

1
|K|

ϕ
( ∏
k∈K

Bk
)
ϕ
( ∏
k/∈K

Bk
)

=
∑
K∈K

1
|K|

λζ
( ∏
k∈K

Bk
)λζ( ∏

k/∈K
Bk
)

+2(1−λ)ϕ
( ∏
k/∈K

Bk
)

+(1−λ)2 ∑
K∈K

1
|K|

ϕ
( ∏
k∈K

Bk
)
ϕ
( ∏
k/∈K

Bk
)

= (1− (1−λ)2)
∑
K∈K

1
|K|

ζ
( ∏
k∈K

Bk
) λ2

1− (1−λ)2 ζ
( ∏
k/∈K

Bk
)

+ 2λ(1−λ)
1− (1−λ)2ϕ

( ∏
k/∈K

Bk
)

+(1−λ)2 ∑
K∈K

1
|K|

ϕ
( ∏
k∈K

Bk
)
ϕ
( ∏
k/∈K

Bk
)
.
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Thus, (SA.23) holds for n= 4.

Now suppose that (SA.23) holds for an arbitrary given n ≥ 4. We show that (SA.23)

then holds for n+1. Fix any ∏n+1
k=1Bk ∈∏n+1

k=1 B(X). We have

n+1∏
k=1

f(Bk) =
∑

K∈Kn+1

1
|Kn+1|

λζ( ∏
k∈K

Bk
)

+(1−λ)ϕ
( ∏
k∈K

Bk
) ∏

k/∈K
f(Bk)

=
∑

K∈Kn+1

1
|Kn+1|

λζ( ∏
k∈K

Bk
)

+(1−λ)ϕ
( ∏
k∈K

Bk
)

·

(1− (1−λ)(n−1)÷2)
∑

H∈Kn+1\{K}

1
|Kn−1|

ζ
( ∏
k∈H

Bk
)
ξn−1

( ∏
k/∈H∪K

Bk
)

+(1−λ)(n−1)÷2γ
( ∏
k/∈K

Bk
)

=
∑

K∈Kn+1

1
|Kn+1|

λζ
( ∏
k∈K

Bk
)

·

1
2(1− (1−λ)(n−1)÷2)

∑
H∈Kn+1\{K}

1
|Kn−1|

ζ
( ∏
k∈H

Bk
)
ξn−1

( ∏
k/∈H∪K

Bk
)

+(1−λ)(n−1)÷2γ
( ∏
k/∈K

Bk
)

+
∑

K∈Kn+1

1
|Kn+1|

(1− (1−λ)(n−1)÷2)
∑

H∈Kn+1\{K}

1
|Kn−1|

ζ
( ∏
k∈H

Bk
)
ξn−1

( ∏
k/∈H∪K

Bk
)

·

1
2λζ

( ∏
k∈K

Bk
)

+(1−λ)ϕ
( ∏
k∈K

Bk
)

+
∑

K∈Kn+1

1
|Kn+1|

(1−λ)ϕ
( ∏
k∈K

Bk
)
(1−λ)(n−1)÷2γ

( ∏
k/∈K

Bk
)
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=
∑

K∈Kn+1

1
|Kn+1|

ζ
( ∏
k∈K

Bk
)

·

(1− (1−λ)(n−1)÷2)
∑

H∈Kn+1\{K}

1
|Kn−1|

ξn−1
( ∏
k/∈H∪K

Bk
)λζ( ∏

k∈H
Bk
)

+(1−λ)ϕ
( ∏
k∈H

Bk
)

+λ(1−λ)(n−1)÷2γ
( ∏
k/∈K

Bk
)

+
∑

K∈Kn+1

1
|Kn+1|

(1−λ)ϕ
( ∏
k∈K

Bk
)
(1−λ)(n−1)÷2γ

( ∏
k/∈K

Bk
)

= (1− (1−λ)(n+1)÷2)
∑

K∈Kn+1

1
|Kn+1|

ζ
( ∏
k∈K

Bk
)

·

1− (1−λ)(n−1)÷2

1− (1−λ)(n+1)÷2
∑

H∈Kn+1\{K}

1
|Kn−1|

ξn−1
( ∏
k/∈H∪K

Bk
) ∏
k∈H

f(Bk)

+ λ(1−λ)(n−1)÷2

1− (1−λ)(n+1)÷2γ
( ∏
k/∈K

Bk
)

+(1−λ)(n+1)÷2 ∑
K∈Kn+1

1
|Kn+1|

ϕ
( ∏
k∈K

Bk
)
γ
( ∏
k/∈K

Bk
)
.

Thus, (SA.23) holds for n+1.

Now suppose that ζ is invariant to permutation and ξn,γ satisfy (SA.23). For n ≥ 3

and K ∈ Kn, let Ψ([n]) be the set of all permutations of {1, . . . ,n}, and let Ψ([n] \K) be

the set of all permutations of {1, . . . ,n}\K. Then,
n∏
k=1

f(Bk) =
∑

ψ∈Ψ([n])

1
n!

n∏
k=1

f(Bψ(k))

= (1− (1−λ)n÷2)
∑

ψ∈Ψ([n])

1
n!

∑
K∈K

1
|K|

ζ
( ∏
k∈K

Bψ(k)
)
ξn
( ∏
k/∈K

Bψ(k)
)

+(1−λ)n÷2 ∑
ψ∈Ψ([n])

1
n!γ

( n∏
k=1

Bψ(k)
)

= (1− (1−λ)n÷2)
∑
K∈K

1
|K|

ζ
( ∏
k∈K

Bk
) ∑

ψ∈Ψ([n]\K)

1
(n−2)!ξ

n
( ∏
k/∈K

Bψ(k)
)

+(1−λ)n÷2 ∑
ψ∈Ψ([n])

1
n!γ

( n∏
k=1

Bψ(k)
)
,

where the second equality holds because ζ is invariant to permutation. This completes the
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proof of part a) because
∏
k/∈K

B(X) ∋
∏
k/∈K

Bk 7→
∑

ψ∈Ψ([n]\K)

1
(n−2)!ξ

n
( ∏
k/∈K

Bψ(k)
)

is invariant to permutation.

Part b): For every n≥ 4, let {k′(n),k′′(n)} ∈ Kn and, moreover, ∏nk=1Bk ∈∏nk=1 B(X)

with Bk′(n) =B′, Bk′′(n) =B′′, and Bk =X for every k /∈ {k′(n),k′′(n)}. Then,

f(Bk′)f(Bk′′) =
n∏
k=1

f(Bk)

= (1− (1−λ)n÷2)
∑

K∈Kn

1
|Kn|

ζ
( ∏
k∈K

Bk
)
ξn
( ∏
k/∈K

Bk
)

+(1−λ)n÷2γ
( n∏
k=1

Bk
)

= (1− (1−λ)n÷2)
∑

K∈Kn:K∩{k′(n),k′′(n)}=∅

1
|Kn|

ζ
( ∏
k∈K

Bk
)
ξn
( ∏
k/∈K

Bk
)

+(1− (1−λ)n÷2)
∑

K∈Kn:K∩{k′(n),k′′(n)}̸=∅

1
|Kn|

ζ
( ∏
k∈K

Bk
)
ξn
( ∏
k/∈K

Bk
)

+(1−λ)n÷2γ
( n∏
k=1

Bk
)

= (1− (1−λ)n÷2)
∑

K∈Kn:K∩{k′(n),k′′(n)}=∅

1
|Kn|

ξn
( ∏
k/∈K

Bk
)

+(1− (1−λ)n÷2)
∑

K∈Kn:K∩{k′(n),k′′(n)}̸=∅

1
|Kn|

ζ
( ∏
k∈K

Bk
)
ξn
( ∏
k/∈K

Bk
)

+(1−λ)n÷2γ
( n∏
k=1

Bk
)

=: an.

Thus,

f(Bk′)f(Bk′′) = lim
n→∞an

= lim
n→∞

∑
K∈Kn:K∩{k′(n),k′′(n)}=∅

1
|Kn|

ξn
( ∏
k/∈K

Bk
)

= lim
n→∞

∑
K∈Kn:K∩{k′(n),k′′(n)}=∅

1
|Kn|

ξn
(
B′ ×B′′ ×X×·· ·×X︸ ︷︷ ︸

n− 4 times

)

= lim
n→∞ξn

(
B′ ×B′′ ×X×·· ·×X

)
= lim
n→∞ξn{1,2}

(
B′ ×B′′

)
= lim
n→∞ξn{k′(n),k′′(n)}

(
B′ ×B′′

)
,
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where the third line and the last line hold because ξn is invariant to permutation.

For (pl,pk) ∈ [0,1]2, define

cπ(pl,pk) := 1
2pl

(
gπ
(
[pl,1]

)
pk +

∫ 1

pl

gπ([vl,1])dvk
)

+ 1
2pk

∫ 1

pk

(
1+gπ

(
[0,vk −pk +pl]

))
dvk

= 1
2pl

(
gπ
(
[pl,1]

)
pk +

∫ 1

pl

(vl−pl)gπ(dvl)
)

+ 1
2pk

∫ 1

pk

(
1+gπ

(
[0,vk −pk +pl]

))
dvk

= 1
2pl

∫ 1

pl

(vl−pl+pk)gπ(dvl)+ 1
2pk

∫ 1

pk

(
1+gπ

(
[0,vk −pk +pl]

))
dvk

= 1
2pl

∫ 1

pl

∫
vk:vl−pl≥vk−pk

dvkgπ(dvl)+ 1
2pk

∫ 1

pk

(
1+

∫
vl:vl−pl≤vk−pk

dgπ(dvl)
)

dvk.

Since the function cπ is continuous, it has a maximum on [0,1]2. We show in Lemma SA.7

below that

max
(pl,pk)∈[0,1]2

cπ(pl,pk)< π, ∀π ∈ [π0,1].

We need the following lemma, which provides an upper bound on the maximum value.

Lemma SA.6. It holds that

max
(pl,pk)∈[0,1]2

cπ(pl,pk) ≤ max
pl∈[π,1],pk∈[0,pl]

pk(1−pk)+ π

2

(
1+2pk −pl−

pk
pl

)
.

Proof. We show first that

max
(pl,pk)∈[0,1]2

cπ(pl,pk) = max
(pl,pk)∈[0,1]2:pl≥pk

cπ(pl,pk). (SA.24)

Let pl < pk. Then,

cπ(pk,pk) = 1
2pk

∫ 1

pk

∫
vk:vl≥vk

dvkgπ(dvl)+ 1
2pk

∫ 1

pk

(
1+

∫
vl:vl≤vk

dgπ(dvl)
)

dvk.
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Hence, 2
(
cπ(pk,pk)− cπ(pl,pk)

)
is equal to

pk

∫ 1

pk

∫
vk:vl≥vk

dvkgπ(dvl)+pk

∫ 1

pk

∫
vl:vl≤vk

dgπ(dvl)dvk

−pl

∫ 1

pl

∫
vk:vl−pl+pk≥vk

dvkgπ(dvl)−pk

∫ 1

pk

∫
vl:vl≤vk−pk+pl

dgπ(dvl)dvk

= pk

∫ 1

pk

∫
vk:vl≥vk

dvkgπ(dvl)+pk

∫ 1

pk

∫
vl:vk−pk+pl≤vl≤vk

gπ(dvl)dvk

−pl

∫ 1

pl

∫
vk:vl−pl+pk≥vk

dvkgπ(dvl)

= pk

∫ 1

pk

∫
vk:vk≤pk

dvkgπ(dvl)+pk

∫ 1

pk

∫
vk:pk≤vk≤vl

dvkgπ(dvl)

+pk

∫ 1

pk

∫
vl:vk−pk+pl≤vl≤vk

gπ(dvl)dvk

−pl

∫ 1

pl

∫
vk:vk≤pk

dvkgπ(dvl)−pl

∫ 1

pl

∫
vk:pk≤vk≤vl−pl+pk

dvkgπ(dvl)

= min{π,pk}vk +pk

∫ 1

pk

∫
vk:pk≤vk≤vl

dvkgπ(dvl)+pk

∫ 1

pk

∫
vl:vk−pk+pl≤vl≤vk

gπ(dvl)dvk

−min{π,pl}vk −pl

∫ 1

pl

∫
vk:pk≤vk≤vl−pl+pk

dvkgπ(dvl)

≥ pk

∫ 1

pk

∫
vk:pk≤vk≤vl

dvkgπ(dvl)+pk

∫ 1

pk

∫
vl:vk−pk+pl≤vl≤vk

gπ(dvl)dvk

−pl

∫ 1

pl

∫
vk:pk≤vk≤vl−pl+pk

dvkgπ(dvl)

= pk

∫ 1

pk

∫
vk:pk≤vk≤vl

dvkgπ(dvl)+pk

∫ 1

pl

∫
vk:vl≤vk≤vl−pl+pk

dvkgπ(dvl)

−pl

∫ 1

pl

∫
vk:pk≤vk≤vl−pl+pk

dvkgπ(dvl)

= pk

∫ 1

pl

∫
vk:pk≤vk≤vl

dvkgπ(dvl)+pk

∫ 1

pl

∫
vk:vl≤vk≤vl−pl+pk

dvkgπ(dvl)

−pl

∫ 1

pl

∫
vk:pk≤vk≤vl−pl+pk

dvkgπ(dvl)

= (pk −pl)
∫ 1

pl

∫
vk:pk≤vk≤vl−pl+pk

dvkgπ(dvl)

≥ 0.

This shows (SA.24).

26



Let now pl ≥ pk. Then,

cπ(pl,pk) = 1
2pl

∫ 1

pl

∫
vk:vk≤vl−pl+pk

dvkgπ(dvl)+ 1
2pk

∫ 1

pk

(
1+

∫
vl:vl≤vk−pk+pl

dgπ(dvl)
)

dvk

= 1
2pl

∫ 1

pl

∫
vk:vk≤pk

dvkgπ(dvl)+ 1
2pl

∫ 1

pl

∫
vk:pk≤vk≤vl−pl+pk

dvkgπ(dvl)

+1
2pk

∫ 1

pk

(
1+

∫
vl:vl≤pl

dgπ(dvl)
)

dvk

+1
2pk

∫ 1

pk

∫
vl:pl≤vl≤vk−pk+pl

dgπ(dvl)dvk

≤ 1
2pl

∫ 1

pl

∫
vk:vk≤pk

dvkgπ(dvl)+ 1
2pl

∫ 1

pl

∫
vk:pk≤vk≤1−pl+pk

dvkgπ(dvl)

+1
2pk

∫ 1

pk

(
1+

∫
vl:vl≤pl

dgπ(dvl)
)

dvk

+1
2pk

∫ 1

1−pl+pk

∫
vl:pl≤vl≤1

dgπ(dvl)dvk

=: a(pl,pk),

where the inequality holds by pl ≥ pk. There are two cases.

Case 1: pl ≤ π. Then,

a(pl,pk) = 1
2plpk + 1

2pl(1−pl)+ 1
2pk(1−pk)+ 1

2pk(pl−pk),

so that

∂a(pl,pk)
∂pl

= 1
2pk + 1

2(1−2pl)+ 1
2pk = 1

2 +pk −pl,

∂a(pl,pk)
∂pk

= 1
2pl+

1
2(1−2pk)+ 1

2(pl−2pk) = 1
2 −2pk +pl.

It follows that if

a(p∗
l ,p

∗
k) = max

pl∈[0,π],pk∈[0,pl]
a(pl,pk),

then p∗
k = p∗

l or p∗
k = 1/4+p∗

l /2. With both solutions for pk, we obtain

∂a(pl,pk)
∂pl

> 0, ∀pl ∈ [0,1].

Hence,

a(p∗
l ,p

∗
k) = max

pl∈[0,π],pk∈[0,pl]
a(pl,pk)

implies p∗
l = π. We can therefore drop Case 1 and concentrate on the following Case 2.
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Case 2: pl ≥ π. Then,

a(pl,pk) = 1
2pl

π

pl
pk + 1

2pl
π

pl
(1−pl)+ 1

2pk(1−pk)
(

1+1− π

pl

)
+ 1

2pk(pl−pk)
π

pl

= π

2 pk + π

2 (1−pl)+pk(1−pk)
(

1− π

2pl

)
+pk(pl−pk)

π

2pl

= pk(1−pk)+ π

2

(
pk +1−pl−

pk(1−pk)
pl

+ pk(pl−pk)
pl

)

= pk(1−pk)+ π

2

(
1+2pk −pl−

pk
pl

)
.

We use Lemma SA.6 to prove the following lemma. We note that in the proof, we use

Wolfram Mathematica to solve

max
x∈[0,1]

x(1−x)+ 1
3

1√
3
(
2(x−

√
x)−1

)
;

according to Wolfram Mathematica, the maximum is equal to −0.0185221.8

Lemma SA.7. For every π ∈ [π0,1], it holds that

max
(pl,pk)∈[0,1]2

cπ(pl,pk)< π.

Proof. By Lemma SA.6,

max
(pl,pk)∈[0,1]2

cπ(pl,pk)−π ≤ max
pl∈[π,1],pk∈[0,pl]

pk(1−pk)+ π

2

(
1+2pk −pl−

pk
pl

)
−π

= max
pl∈[π,1],pk∈[0,pl]

pk(1−pk)+ π

2

(
2pk −pl−

pk
pl

−1
)

≤ max
pl∈(0,1],pk∈[0,pl]

pk(1−pk)+ π

2

(
2pk −pl−

pk
pl

−1
)
.

Define

m(pl,pk) := pk(1−pk)+ π

2

(
2pk −pl−

pk
pl

−1
)
.

8The code is: Maximize
[{

2(x−x0.5)−1
3 30.5 +(1−x)x,x ≥ 0,x ≤ 1

}
,{x}

]
. The output is:

{−0.0185221,{x → 0.564362}}.
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Then,

∂m(pl,pk)
∂pl

= π

2

(
−1+ pk

p2
l

)
,

∂m(pl,pk)
∂pk

= 1−2pk + π

2

(
2− 1

pl

)
.

It follows that if

m(p∗
l ,p

∗
k) = max

pl∈(0,1],pk∈[0,pl]
m(pl,pk)

with p∗
l = 1, then

∂m(pl,pk)
∂pk

∣∣∣∣∣
(1,p∗

k)
= 0 ⇐⇒ p∗

k = 1
2 + π

4 ,

since

∂m(pl,pk)
∂pk

∣∣∣∣∣
(1,0)

= 1+ π

2 > 0,

∂m(pl,pk)
∂pk

∣∣∣∣∣
(1,1)

= −1+ π

2 < 0.

But

∂m(pl,pk)
∂pl

∣∣∣∣∣(
1, 12 + π

4

) < 1.

Hence,

m(p∗
l ,p

∗
k) = max

pl∈(0,1],pk∈[0,pl]
m(pl,pk)

implies p∗
l ∈ (0,1). It follows that

∂m(pl,pk)
∂pl

∣∣∣∣∣
(pl,pk)=(p∗

l ,p
∗
k)

= 0 ⇐⇒ p∗
l =

√
p∗
k ∈ (0,1).

We conclude that

max
(pl,pk)∈[0,1]2

cπ(pl,pk)−π ≤ max
pk∈(0,1):pk≤√

pk

pk(1−pk)+ π

2

(
2pk −√

pk − pk√
pk

−1
)

≤ max
pk∈(0,1)

pk(1−pk)+ π

2
(
2pk −√

pk − pk√
pk

−1
)

= max
pk∈[0,1]

pk(1−pk)+ π

2
(
2(pk −√

pk)−1
)
.

Now, at

π = π0 = 2
3

1√
3
,
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we have

max
pk∈[0,1]

pk(1−pk)+ π

2
(
2(pk −√

pk)−1
)

≈ −0.0185221< 0

as mentioned in the text above the lemma. Because 2(pk−√
pk)−1< 0 for every pk ∈ [0,1],

max
pk∈[0,1]

pk(1−pk)+ π

2
(
2(pk −√

pk)−1
)

is strictly decreasing in π. Thus,

max
(pl,pk)∈[0,1]2

cπ(pl,pk)−π ≤ max
pk∈[0,1]

pk(1−pk)+ π

2
(
2(pk −√

pk)−1
)
< 0, ∀π ∈ [π0,1].

SA.4.3 Proof of the Second Part of Theorem 1

Let (π,u) ∈ S. We wish to show that there exists a sequence
(
(πn,un)

)
n∈N

such that

(πn,un) ∈ Sn and (πn,un) −→
n→∞ (π,u).

Because the function p 7→
∫ 1
p gπ([x,1])dx is continuous, there exists a price p′ ∈ [π,1]

such that

u=
∫ 1

p′
gπ([x,1])dx.

Throughout in this subsection, we hold this price p′ fixed.

SA.4.3.1 Construction of Market Segmentations

Fix some ϵ ∈ (0,1] and some N ∈ N. Define the probability measure fN ∈ ∆X by

fN (B) := f(B∩ [0,1/N ])
f([0,1/N ]) =Nf(B∩ [0,1/N ]), ∀B ∈ B(X).

Moreover, define the probability measure ζϵ,N ∈ ∆X2 by

ζϵ,N (B1 ×B2) := 1
2e

ϵ,N
π,p′(B1)fN (B2)+ 1

2f
N (B1)eϵ,Nπ,p′(B2), ∀B1 ×B2 ∈ B(X)×B(X),

where eϵ,Nπ,p′ ∈ ∆X was defined in (SA.11). Let

λ̂N := min
{
λNπ,p′ ,

1
N

}
∈ (0,1),
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where λNπ,p′ was defined in (SA.10). For every B ∈ B(X), we then have

λ̂Nf
N (B) ≤ f(B) and λ̂Ne

ϵ,N
π,p′ ≤ f(B);

hence,

λ̂Nζ
ϵ,N (B1 ×B2) ≤ f(B1)f(B2), ∀B1 ×B2 ∈ B(X)×B(X).

It follows that

B(X)×B(X) ∋B1 ×B2 7→ ϕϵ,N (B1 ×B2) := f(B1)f(B2)− λ̂Nζ
ϵ,N (B1 ×B2)

1− λ̂N

is a probability measure in ∆X2 and

λ̂Nζϵ,N (B1 ×B2)+(1− λ̂N )ϕϵ,N (B1 ×B2) = f(B1)f(B2),

∀B1 ×B2 ∈ B(X)×B(X).
(SA.25)

Invoking (SA.25), we apply part a) of Lemma SA.5: for any n ≥ 3, there exist γ ∈ ∆n

and ξn ∈ ∆Xn−2 such that
n∏
k=1

f(Bk) = (1− (1− λ̂N )n÷2)
∑
K∈K

1
|K|

ζϵ,N
( ∏
k∈K

Bk
)
ξϵ,N,n

( ∏
k/∈K

Bk
)

+(1− λ̂N )n÷2γ
( n∏
k=1

Bk
)
, ∀

n∏
k=1

Bk ∈
n∏
k=1

B(X).
(SA.26)

Moreover, since ζϵ,N is invariant to permutation, we can assume by part a) of Lemma SA.5

that ξϵ,N,n is invariant to permutation.

Note that (SA.26) defines a market segmentation under which market γ is drawn with

probability (1− λ̂N )n÷2 and, with probability (1− (1− λ̂N )n÷2), a market µϵ,N,n,K ∈ ∆Xn

defined by

µϵ,N,n,K
( ∏
k∈K

Bk
)

:= ζϵ,N
( ∏
k∈K

Bk
)
ξϵ,N,n

( ∏
k/∈K

Bk
)
, ∀

n∏
k=1

Bk ∈
n∏
k=1

B(X)

is drawn uniformly at random over K ∈ K. We denote this market segmentation by τ ϵ,N,n.

31



SA.4.3.2 Producer Surplus and Consumer Surplus

If ρ and σ are a strategy for the seller and a selection for the consumers, respectively, then

the producer surplus under market segmentation τ ϵ,N,n, Πτ ϵ,N,n(ρ,σ), is equal to

(1− λ̂N )n÷2
∫ ∫ ∑

k∈K′
σv,K′,p(k)pkγ(dv)ρ(γ,d(K ′,p))

+(1− (1− λ̂N )n÷2)
∑
K∈K

1
|K|

∫ ∫ ∑
k∈K′

σv,K′,p(k)pkµϵ,N,n,K(dv)ρ(µϵ,N,n,K ,d(K ′,p)),

and the consumer surplus Uτ ϵ,N,n(ρ,σ) is equal to

(1− λ̂N )n÷2
∫ ∫ ∑

k∈K′
σv,K′,p(k)(vk −pk)γ(dv)ρ(γ,d(K,p))

+(1− (1− λ̂N )n÷2)
∑
K∈K

1
|K|

∫ ∫ ∑
k∈K′

σv,K′,p(k)(vk −pk)µϵ,N,n,K(dv)ρ(µϵ,N,n,K ,d(K ′,p)).

To simplify the notation, we denote the contribution to producer surplus from market

µϵ,N,n,K by

cϵ,N,n,KΠ (ρ,σ) :=
∫ ∫ ∑

k∈K′
σv,K′,p(k)pkµϵ,N,n,K(dv)ρ(µϵ,N,n,K ,d(K ′,p))

and the contribution to consumer surplus by

cϵ,N,n,KU (ρ,σ) :=
∫ ∫ ∑

k∈K′
σv,K′,p(k)(vk −pk)µϵ,N,n,K(dv)ρ(µϵ,N,n,K ,d(K ′,p)).

For {k′,k′′} ∈ Kn and (pk′ ,pk′′) ∈ [0,1]2 define also

c̃ϵ,N,n,KΠ ({k′,k′′},pk′ ,pk′′) := µϵ,N,n,K{k′,k′′}

(
{vk′ ≥ pk′ ,vk′ −pk′ ≥ vk′′ −pk′′}

)
pk′

+µϵ,N,n,K{k′,k′′}

(
{vk′′ ≥ pk′′ ,vk′′ −pk′′ > vk′ −pk′}

)
pk′′ ,

c̃ϵ,N,n,KU ({k′,k′′},pk′ ,pk′′) :=
∫ (

1vk′≥p′
k,vk′−pk′≥vk′′−pk′′ (vk′ ,vk′′)(vk′ −pk′)

+1vk′′≥pk′′ ,vk′′−pk′′>vk′−pk′ (vk′ ,vk′′)(vk′′ −pk′′)
)
µϵ,N,n,K(dv),

M ϵ,N,n,K := arg max
{k′,k′′}∈Kn,(pk′ ,pk′′)∈[0,1]2

c̃ϵ,N,n,KΠ ({k′,k′′},pk′ ,pk′′).

We describe an optimal selection for the consumers: given any set of offered products

{k′,k′′} ∈ Kn and corresponding prices (pk′ ,pk′′) ∈ [0,1]2, buy product k′ if and only if vk′ ≥

pk′ and vk′ −pk′ ≥ vk′′ −pk′′ ; buy product k′′ if and only if vk′′ ≥ pk′′ and vk′′ −pk′′ >vk′ −pk′ ,
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where pk′ ≥ pk′′ .9 Denote this selection by σ∗. We also describe an optimal strategy for

the seller, restricted to market µϵ,N,n,K , given σ∗: choose ({k′,k′′},(pk′ ,pk′′)) ∈ M ϵ,N,n,K

so as to maximize c̃ϵ,N,n,KU ({k′,k′′},pk′ ,pk′′). We leave the strategy unspecified for markets

µ /∈ {µϵ,N,n,K ,K ∈ Kn}, as these will be unimportant, and denote it by ρ∗. Then, for every

K ∈ Kn,

cϵ,N,n,KΠ (ρ∗,σ∗) = max
{k′,k′′}∈Kn,(pk′ ,pk′′)∈[0,1]2

c̃ϵ,N,n,KΠ ({k′,k′′},pk′ ,pk′′) =: ĉϵ,N,n,KΠ , (SA.27)

cϵ,N,n,KU (ρ∗,σ∗) = max
({k′,k′′},(pk′ ,pk′′))∈Mϵ,N,n,K

c̃ϵ,N,n,KU ({k′,k′′},pk′ ,pk′′) =: ĉϵ,N,n,KU . (SA.28)

We can now prove the second part of Theorem 1 by showing that for every K =

{k′,k′′},k′,k′′ ∈ N,k′ ̸= k′′,

lim
ϵ→0

lim
N→∞

lim
n→∞ ĉϵ,N,n,KΠ = π, (SA.29)

lim
ϵ→0

lim
N→∞

lim
n→∞ ĉϵ,N,n,KU = u. (SA.30)

SA.4.3.3 Limits

We will see that the limits (SA.29) and (SA.30) hold if, for sufficiently small ϵ, we can

choose N sufficiently large such that as n grows without bound, the seller eventually offers

in market µϵ,N,n,K the two products in K. The limits (SA.29) and (SA.30) will then follow

from Lemma SA.3 in Section SA.3.

The following lemma concerns the case that the seller offers in market µϵ,N,n,K the two

products in K.

Lemma SA.8. Let k′,k′′ ∈ N,k′ ̸= k′′. Let n≥ max{k′,k′′}. Then,

lim
ϵ→0

lim
N→∞

max
(pk′ ,pk′′)∈[0,1]2

c̃
ϵ,N,n,{k′,k′′}
Π ({k′,k′′},pk′ ,pk′′) = π (SA.31)

For every ϵ ∈ (0,1], let furthermore
(
(pϵ,Nk′ ,pϵ,Nk′′ )

)
N∈N

be a sequence of prices such that

(pϵ,Nk′ ,pϵ,Nk′′ ) ∈ arg max
(pk′ ,pk′′)∈[0,1]2

c̃
ϵ,N,n,{k′,k′′}
Π ({k′,k′′},pk′ ,pk′′), ∀N ∈ N.

9Thus, the consumer breaks ties in favor of the seller under this selection. With this tie-breaking rule,

c̃ϵ,N,n,K
Π is upper semicontinuous, which implies that M ϵ,N,n,K is nonempty and compact (see Alipran-

tis and Border, 2006, Thm. 2.43). We note that by the Dominated Convergence Theorem, c̃ϵ,N,n,K
U is

continuous and therefore has a maximum on M ϵ,N,n,K ; this is used in (SA.28).
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Then,

lim
ϵ→0

lim
N→∞

c̃ϵ,N,n,KU ({k′,k′′},pϵ,Nk′ ,pϵ,Nk′′ ) =
∫ 1

p
gπ([x,1])dx. (SA.32)

Proof. We first prove (SA.31). We consider here the case that pk′ ≥ pk′′ ; the other case is

analogous.

If pk′ ≤ 1/N , then

c̃
ϵ,N,n,{k′,k′′}
Π ({k′,k′′},pk′ ,pk′′) ≤ 1

N
.

If pk′′ ≤ 1/N ≤ pk′ , then

c̃
ϵ,N,n,{k′,k′′}
Π ({k′,k′′},pk′ ,pk′′) = ζϵ,N

(
{vk′ ≥ pk′ ,vk′ −pk′ ≥ vk′′ −pk′′}

)
pk′

+ ζϵ,N
(
{vk′′ ≥ pk′′ ,vk′′ −pk′′ > vk′ −pk′}

)
pk′′

≤ ζϵ,N
(
{vk′ ≥ pk′}

)
pk′ + 1

N

= 1
2e

ϵ,N
π,p′([pk′ ,1])pk′ + 1

N

≤ max
pk′

1
2e

ϵ,N
π,p′([pk′ ,1])pk′ + 1

N
.

By Lemma SA.3, it follows that

lim
ϵ→0

lim
N→∞

max
pk′ ,pk′′≤pk′

c̃
ϵ,N,n,{k′,k′′}
Π ({k′,k′′},pk′ ,pk′′)

≤ lim
ϵ→0

lim
N→∞

max
pk′

1
2e

ϵ,N
π,p′([pk′ ,1])pk′ + 1

N

= 1
2π.

If finally pk′′ > 1/N , then

c̃
ϵ,N,n,{k′,k′′}
Π ({k′,k′′},pk′ ,pk′′) = ζϵ,N

(
{vk′ ≥ pk′ ,vk′ −pk′ ≥ vk′′ −pk′′}

)
pk′

+ ζϵ,N
(
{vk′′ ≥ pk′′ ,vk′′ −pk′′ > vk′ −pk′}

)
pk′′

= 1
2e

ϵ,N
π,p′([pk′ ,1])pk′ + 1

2e
ϵ,N
π,p′([pk′′ ,1])pk′′

≤ max
x
xeϵ,Nπ,p′([x,1]).
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By Lemma SA.3 again, it follows that

lim
ϵ→0

lim
N→∞

max
pk′ ,pk′′≤p′

k

c̃
ϵ,N,n,{k′,k′′}
Π ({k′,k′′},pk′ ,pk′′)

≤ lim
ϵ→0

lim
N→∞

max
x∈[π,1]

xeϵ,Nπ,p′([x,1])

= π.

This shows (SA.31) and, by (SA.14), also (SA.32).

The next lemma concerns the case that the seller offers in market µϵ,N,n,K none of the

two products inK. Since ζϵ,N and ξϵ,N,n are invariant to permutation, c̃ϵ,N,n,KΠ ({l′, l′′},pl′ ,pl′′)

is the same for every {l′, l′′} ∈ Kn with {l′, l′′}∩K = ∅.

Lemma SA.9. Let k′,k′′ ∈ N,k′ ̸= k′′. Let l′, l′′ ∈ N, l′ ̸= l′′ with {l′, l′′} ∩ {k′,k′′} = ∅. Let

ϵ ∈ (0,1] and N ∈ N. Then,

limsup
n→∞

max
(pl′ ,pl′′)∈[0,1]2

c̃
ϵ,N,n,{k′,k′′}
Π ({l′, l′′},pl′ ,pl′′)< π. (SA.33)

Proof. Note that

c̃
ϵ,N,n,{k′,k′′}
Π ({l′, l′′},pl′ ,pl′′) ≤ µ

ϵ,N,n,{k′,k′′}
{l′,l′′}

(
{vl′ ≥ pl′ ,vl′ −pl′ ≥ vl′′ −pl′′}

)
pl′

+µ
ϵ,N,n,{k′,k′′}
{l′,l′′}

(
{vl′′ ≥ pl′′ ,vl′′ −pl′′ ≥ vl′ −pl′}

)
pl′′

= ξϵ,N,n{l′,l′′}

(
{vl′ ≥ pl′ ,vl′ −pl′ ≥ vl′′ −pl′′}

)
pl′

+ ξϵ,N,n{l′,l′′}

(
{vl′′ ≥ pl′′ ,vl′′ −pl′′ ≥ vl′ −pl′}

)
pl′′

=: an(pl′ ,pl′′).

Since (pl′ ,pl′′) 7→ an is upper semicontinuous, there exists (pnl′ ,pnl′′) ∈ [0,1]2 such that

an(pnl′ ,pnl′′) = max
(pl′ ,pl′′)∈[0,1]2

an(pl′ ,pl′′).

Since [0,1]2 is sequentially compact, there exists a converging subsequence
(
(pnt
l′ ,p

nt
l′′ )
)
t∈N

with

lim
t→∞

ant(pnt
l′ ,p

nt
l′′ ) = limsup

n→∞
max

(pl′ ,pl′′)∈[0,1]2
an(pl′ ,pl′′).

Denoting

lim
t→∞

(pnt
l′ ,p

nt
l′′ ) =: (p∗

l′ ,p
∗
l′′),
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it follows that for every y > 0, there exists t′ ∈ N such that for every t > t′,

ant(pnt
l′ ,p

nt
l′′ ) ≤ ξϵ,N,nt

{l′,l′′}

(
{vl′ ≥ p∗

l′ −y,vl′ −vl′′ ≥ p∗
l′ −p∗

l′′ −y}
)
(p∗
l′ +y)

+ ξϵ,N,nt

{l′,l′′}

(
{vl′′ ≥ p∗

l′ −y,vl′′ −vl′ ≥ p∗
l′′ −p∗

l′ −y}
)
(p∗
l′′ +y).

Hence, for every y > 0,

lim
t→∞

ant(pnt
l′ ,p

nt
l′′ ) ≤ lim

n→∞ξϵ,N,n{l′,l′′}

(
{vl′ ≥ p∗

l′ −y,vl′ −vl′′ ≥ p∗
l′ −p∗

l′′ −y}
)
(p∗
l′ +y)

+ ξϵ,N,n{l′,l′′}

(
{vl′′ ≥ p∗

l′ −y,vl′′ −vl′ ≥ p∗
l′′ −p∗

l′ −y}
)
(p∗
l′′ +y).

By part b) of Lemma SA.5, since f is the Lebesgue measure on [0,1],

lim
n→∞ξϵ,N,n{l′,l′′}

(
{vl′ ≥ p∗

l′ −y,vl′ −vl′′ ≥ p∗
l′ −p∗

l′′ −y}
)
(p∗
l′ +y)

+ ξϵ,N,n{l′,l′′}

(
{vl′′ ≥ p∗

l′ −y,vl′′ −vl′ ≥ p∗
l′′ −p∗

l′ −y}
)
(p∗
l′′ +y)

= (p∗
l′ +y)

∫ 1

p∗
l′−y

vl′ − (p∗
l′ −p∗

l′′ −y)dvl′ +(p∗
l′′ +y)

∫ 1

p∗
l′′−y

vl′′ − (p∗
l′′ −p∗

l′ −y)dvl′′ .

Thus,

lim
t→∞

ant(pnt
l′ ,p

nt
l′′ )

≤ lim
y→0

(p∗
l′ +y)

∫ 1

p∗
l′−y

vl′ − (p∗
l′ −p∗

l′′ −y)dvl′ +(p∗
l′′ +y)

∫ 1

p∗
l′′−y

vl′′ − (p∗
l′′ −p∗

l′ −y)dvl′′

= p∗
l′

∫ 1

p∗
l′
vl′ − (p∗

l′ −p∗
l′′)dvl′ +p∗

l′′

∫ 1

p∗
l′′
vl′′ − (p∗

l′′ −p∗
l′)dvl′′

≤ max
(pl′ ,pl′′)∈[0,1]2

pl′
∫ 1

pl′
vl′ − (pl′ −pl′′)dvl′ +pl′′

∫ 1

pl′′
vl′′ − (pl′′ −pl′)dvl′′

= π0

< π.

This shows (SA.33).

The next lemma concerns the case that the seller offers in market µϵ,N,n,K one of the

two products in K and one product that does not belong to K. Since ζϵ,N and ξϵ,N,n are

invariant to permutation, c̃ϵ,N,n,KΠ ({l′, l′′},pl′ ,pl′′) has the same value for every {l′, l′′} ∈ K

with |{l′, l′′}∩K| = 1.
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Lemma SA.10. Let k′,k′′ ∈ N,k′ ̸= k′′. Let l′, l′′ ∈ N, l′ ̸= l′′ with |{l′, l′′} ∩ {k′,k′′}| = 1.

Then

limsup
ϵ→0

limsup
N→∞

limsup
n→∞

max
(pl′ ,pl′′)∈[0,1]2

c̃
ϵ,N,n,{k′,k′′}
Π ({l′, l′′},pl′ ,pl′′)< π. (SA.34)

Proof. As in the proof of the previous lemma, note that

c̃
ϵ,N,n,{k′,k′′}
Π ({l′, l′′},pl′ ,pl′′) ≤ µ

ϵ,N,n,{k′,k′′}
{l′,l′′}

(
{vl′ ≥ pl′ ,vl′ −pl′ ≥ vl′′ −pl′′}

)
pl′

+µ
ϵ,N,n,{k′,k′′}
{l′,l′′}

(
{vl′′ ≥ pl′′ ,vl′′ −pl′′ ≥ vl′ −pl′}

)
pl′′ .

Without loss of generality, suppose that product l′ is the product contained in {k′,k′′}.

Furthermore, let pl′ ≥ 1/N ; as in the proof of Lemma SA.8, this will be the case for

sufficiently large N when c̃
ϵ,N,n,{k′,k′′}
Π ({l′, l′′},pl′ ,pl′′) is maximized. Then,

µ
ϵ,N,n,{k′,k′′}
{l′,l′′}

(
{vl′ ≥ pl′ ,vl′ −pl′ ≥ vl′′ −pl′′}

)
pl′

+µ
ϵ,N,n,{k′,k′′}
{l′,l′′}

(
{vl′′ ≥ pl′′ ,vl′′ −pl′′ ≥ vl′ −pl′}

)
pl′′

= 1
2pl

′

∫ 1

pl′
ξϵ,N,nl′′

(
[0,vl′ −pl′ +pl′′ ]

)
eϵ,Nπ,p′(dvl′)

+ 1
2pl

′′

∫ 1

pl′′

(
1+ eϵ,Nπ,p′

(
[0,vl′′ −pl′′ +pl′ ]

))
ξϵ,N,nl′′ (dvl′′)

=: aϵ,N,n(pl′ ,pl′′).

Since (pl′ ,pl′′) 7→ aϵ,N,n(pl′ ,pl′′) is upper semicontinuous, there exists (pϵ,N,nl′ ,pϵ,N,nl′′ ) ∈

[0,1]2 such that

aϵ,N,n(pϵ,N,nl′ ,pϵ,N,nl′′ ) = max
(pl′ ,pl′′)∈[0,1]2

aϵ,N,n(pl′ ,pl′′).

Since [0,1]2 is sequentially compact, there exists a converging subsequence

(
(pϵr,Ns,nt
l′ ,pϵr,Ns,nt

l′′ )
)
r∈N,s∈N,t∈N

with

lim
r→∞ lim

s→∞ lim
t→∞

aϵr,Ns,nt(pϵr,Ns,nt
l′ ,pϵr,Ns,nt

l′′ ) = limsup
ϵ→0

limsup
N→∞

limsup
n→∞

max
(pl′ ,pl′′)∈[0,1]2

aϵ,N,n(pl′ ,pl′′).

Denoting

lim
r→∞ lim

s→∞ lim
t→∞

(pϵr,Ns,nt
l′ ,pϵr,Ns,nt

l′′ ) =: (p∗
l′ ,p

∗
l′′),
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it follows that for every y > 0, there exists r′ ∈ N such that for every r > r′,

lim
s→∞ lim

t→∞
aϵr,Ns,nt(pϵr,Ns,nt

l′ ,pϵr,Ns,nt
l′′ )

≤ lim
s→∞ lim

t→∞
1
2(p∗

l′ +y)
∫ 1

p∗
l′−y

ξϵr,Ns,nt
l′′

(
[0,vl′ −p∗

l′ +p∗
l′′ +y]

)
eϵr,Ns

π,p′ (dvl′)

+ 1
2(p∗

l′′ +y)
∫ 1

p∗
l′′−y

(
1+ eϵr,Ns

π,p′

(
[0,vl′′ −p∗

l′′ +p∗
l′ +y]

))
ξϵr,Ns,nt
l′′ (dvl′′).

Consequently,

lim
r→∞ lim

s→∞ lim
t→∞

aϵr,Ns,nt(pϵr,Ns,nt
l′ ,pϵr,Ns,nt

l′′ )

≤ lim
r→∞ lim

s→∞ lim
t→∞

1
2(p∗

l′ +y)
∫ 1

p∗
l′−y

ξϵr,Ns,nt
l′′

(
[0,vl′ −p∗

l′ +p∗
l′′ +y]

)
eϵr,Ns

π,p′ (dvl′) (SA.35)

+ 1
2(p∗

l′′ +y)
∫ 1

p∗
l′′−y

(
1+ eϵr,Ns

π,p′

(
[0,vl′′ −p∗

l′′ +p∗
l′ +y]

))
ξϵr,Ns,nt
l′′ (dvl′′), ∀y > 0.

By part b) of Lemma SA.5, since f is the Lebesgue measure on [0,1],

lim
t→∞

1
2(p∗

l′ +y)
∫ 1

p∗
l′−y

ξϵr,Ns,nt
l′′

(
[0,vl′ −p∗

l′ +p∗
l′′ +y]

)
eϵr,Ns

π,p′ (dvl′)

+ 1
2(p∗

l′′ +y)
∫ 1

p∗
l′′−y

(
1+ eϵr,Ns

π,p′

(
[0,vl′′ −p∗

l′′ +p∗
l′ +y]

))
ξϵr,Ns,nt
l′′ (dvl′′)

= 1
2(p∗

l′ +y)
∫ 1

p∗
l′−y

f
(
[0,vl′ −p∗

l′ +p∗
l′′ +y]

)
eϵr,Ns

π,p′ (dvl′)

+ 1
2(p∗

l′′ +y)
∫ 1

p∗
l′′−y

(
1+ eϵr,Ns

π,p′

(
[0,vl′′ −p∗

l′′ +p∗
l′ +y]

))
f(dvl′′)

= 1
2(p∗

l′ +y)
∫ 1

p∗
l′−y

(vl′ −p∗
l′ +p∗

l′′ +y)eϵr,Ns

π,p′ (dvl′)

+ 1
2(p∗

l′′ +y)
∫ 1

p∗
l′′−y

(
1+ eϵr,Ns

π,p′

(
[0,vl′′ −p∗

l′′ +p∗
l′ +y]

))
dvl′′

= 1
2(p∗

l′ +y)
(
eϵr,Ns

π,p′

(
[p∗
l′ −y,1]

)
p∗
l′′ +

∫ 1

p∗
l′−y

eϵr,Ns

π,p′ ([vl′ ,1])dvl′′
)

+ 1
2(p∗

l′′ +y)
∫ 1

p∗
l′′−y

(
1+ eϵr,Ns

π,p′

(
[0,vl′′ −p∗

l′′ +p∗
l′ +y]

))
dvl′′ .

By (SA.19) and (SA.16),

lim
r→∞ lim

s→∞eϵr,Ns

π,p′ = gπ.

Because x 7→ gπ[x,1] is continuous, the Portmanteau Theorem therefore implies

lim
r→∞ lim

s→∞eϵr,Ns

π,p′

(
[p∗
l′ −y,1]

)
= gπ

(
[p∗
l′ −y,1]

)
.
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Since vl′ 7→ eϵr,Ns

π,p′ ([vl′ ,1]) and vl′′ 7→ eϵr,Ns

π,p′

(
[0,vl′′ −p∗

l′′ +p∗
l′ +y]

)
are monotone and therefore

have at most countably many discontinuity points, the Dominated Convergence Theorem

thus implies

lim
r→∞ lim

s→∞
1
2(p∗

l′ +y)
(
eϵr,Ns

π,p′

(
[p∗
l′ −y,1]

)
p∗
l′′ +

∫ 1

p∗
l′−y

eϵr,Ns

π,p′ ([vl′ ,1])dvl′′
)

+ 1
2(p∗

l′′ +y)
∫ 1

p∗
l′′−y

(
1+ eϵr,Ns

π,p′

(
[0,vl′′ −p∗

l′′ +p∗
l′ +y]

))
dvl′′

= 1
2(p∗

l′ +y)
(
gπ
(
[p∗
l′ −y,1]

)
p∗
l′′ +

∫ 1

p∗
l′−y

gπ([vl′ ,1])dvl′′
)

+ 1
2(p∗

l′′ +y)
∫ 1

p∗
l′′−y

(
1+gπ

(
[0,vl′′ −p∗

l′′ +p∗
l′ +y]

))
dvl′′ .

Because x 7→ gπ
(
[x,1]

)
is continuous, and x 7→ gπ

(
[0,x]

)
is continuous except at x= 1,

lim
y→0

1
2(p∗

l′ +y)
(
gπ
(
[p∗
l′ −y,1]

)
p∗
l′′ +

∫ 1

p∗
l′−y

gπ([vl′ ,1])dvl′′
)

+ 1
2(p∗

l′′ +y)
∫ 1

p∗
l′′−y

(
1+gπ

(
[0,vl′′ −p∗

l′′ +p∗
l′ +y]

))
dvl′′

= 1
2p

∗
l′

(
gπ
(
[p∗
l′ ,1]

)
p∗
l′′ +

∫ 1

p∗
l′
gπ([vl′ ,1])dvl′′

)

+ 1
2p

∗
l′′

∫ 1

p∗
l′′

(
1+gπ

(
[0,vl′′ −p∗

l′′ +p∗
l′ ]
))

dvl′′ .

By (SA.35), (SA.34) thus holds if

1
2p

∗
l′

(
gπ
(
[p∗
l′ ,1]

)
p∗
l′′ +

∫ 1

p∗
l′
gπ([vl′ ,1])dvl′′

)
+ 1

2p
∗
l′′

∫ 1

p∗
l′′

(
1+gπ

(
[0,vl′′ −p∗

l′′ +p∗
l′ ]
))

dvl′′ < π.

This inequality does hold, as we stated in Lemma SA.7.

Taken together, Lemmas SA.8, SA.9, and SA.10 show the limit (SA.29) regarding the

producer surplus and the limit (SA.30) regarding the consumer surplus. This concludes

the proof of the second part of Theorem 1.
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