
Supplemental Appendixes, Agent-Based Modeling in Economics and Finance: Past, Present, and
Future by Robert L. Axtell and J. Doyne Farmer

Appendix 1: Meanings of Acronyms Mentioned

ABE: agent-based economics
ABM: agent-based modeling or agent-based model
ACE: agent-based computational economics
AI: artificial intelligence
ALife: artificial life
BR: bounded rationality
CA: cellular automaton or automata
CAS: complex adaptive system
CDA: continuous double auction
CES: constant elasticity of substitution
CGE: computable general equilibrium model
CRISIS: European Union funded project to model the Financial Crisis with ABM
DAI: distributed artificial intelligence
DSGE: dynamic stochastic general equilibrium model of macroeconomics
EU: European Union
EWA: experience-weighted attraction, an empirically-grounded learning algorithm
FFRDC: Federally-funded research and development corporation
GARCH: generalized autoregressive conditional heteroskedasticity
GFDL: Geophysical Fluid Dynamics Laboratory at Princeton University
GIS: geographic information systems
GSIA: Graduate School of Industrial Administration at the Carnegie Institute of Technology;

today: Tepper School of Business at Carnegie-Mellon University
IBM: individual-based model
LANL: Los Alamos National Laboratory
LFN: labor flow network
MAS: multi-agent systems
MERS: Middle East Respiratory Sickness
MIDAS: Models of Infectious Disease Agent Study at NIH
MLS: Multiple listing service, a real estate firm and data aggregator
MRS: marginal rate of substitution of one good for another
NASDAQ: National Association of Securities Dealers Automated Quotations
NCAR: National Center for Atmospheric Research
NIH: National Institutes of Health
NOAA: National Oceanic and Atmospheric Administration
NSF: National Science Foundation
NWS: National Weather Service
OFR: Office of Financial Research within the Department of Treasury
OR: operations research
REE: rational expectations equilibrium/equilibria
SARS: severe acute respiratory syndrome
SBE: Social, Behavioral & Economic Sciences Directorate at NSF
SD: system dynamics, modeling approach pioneered by Jay Forrester at MIT

SEC: U.S. Securities and Exchange Commission
SES: Social and Economic Sciences Division at NSF
SNA: social network analysis
SOES: Small Order Execution System on the NASDAQ
UCAR: University Consortium for Atmospheric Research
V&V: verification and validation
VaR: value at risk
WMAD: Walras-McKenzie-Arrow-Debreu model of general equilibrium
ZI: zero-intelligence, trading agents who act purposively but without an internal model
ZIP: zero-intelligence plus trading agents

Appendix 2: Computer Terms, Languages, and Systems Discussed
ABM: agent-based model or agent-based modeling
ACT-R: computational cognitive architecture
AgentSheets: simple, user-friendly ABM software environment
ASCII: American Standard Code for Information Interchange, for character encoding
BASIC: early programming language, little used today
BDI: belief-desires-intentions representation of agent behavior, popular in MAS
C: early low-level programming language, still in wide use today
C++: object-oriented version of C
C#: object-oriented programming language from Microsoft
CLARION: computational cognitive architecture
CMIP: Coupled Model Intercomparison Project
CORMAS: ABM software commonly used for natural resource models
CPU: central processing unit
DP: dynamic programming, pioneered by Richard Bellman in the 1950scu
DSGE: dynamic stochastic general equilibrium model of macroeconomics
EINSTEIN: combat modeling toolkit
EPISIMS: epidemic simulation code derived from TRANSIMS at Los Alamos
EurACE: agent-based macroeconomic model in use in Europe for research and policy
FLAME: ABM software environment for running models on GPUs
FLOPS: floating point operations per second
FORTRAN: early programming language, still in use today for scientific computing
GAMS: General Algebraic Modeling Systems
GEMS: General Electric modeling and simulation language
GPSS: general purpose simulation system
GPU: graphics processing unit
HPC: high-performance computing
ISAAC: Irreducible, Semi-Autonomous Adaptive Combat model, early military ABM
JABOWA: early forest simulation system in IBM ecology
Java: OOP language originally created by Sun Microsystems, currently owned by Oracle
MABM: macroeconomic ABM
MASON: ABM software framework in Java from George Mason University
Mathematica: commercial mathematics software and programming package
MATLAB: commercial software package
MESA: ABM software framework in Python
NetLogo: popular ABM environment requiring modest programming background
NP: complexity class of problems solvable nondeterministically in polynomial time
Objective-C: early object-oriented programming language, still in use at Apple
ODD: protocol for reporting ABMs
OOP: object-oriented programming
P: complexity class of problems solvable in polynomial time
PAC: probably approximately correct learning, a learning algorithm
Pascal: programming language created at ETH Zurich in the 1970s, litte used today
PPA/PPAD: complexity classes between P and NP; polynomial parity argument on either

undirected or directed graphs, respectively
RAM: random access memory

RePast and RePast HPC: open source ABM software framework in Java, C++, and C# from
Argonne National Laboratory

RePastPy: RePast based on Python
RNG: random number generator
SimScript: early simulation language, still in use today
SIMULA: the first OOP language and a family of simulation languages
SmallTalk: early object-oriented programming language, in little use today
SOAR: early computational cognitive architecture
StarLogo: early programming language for beginners from MIT
Sugarscape: early ABM in which agents forage for resources and engage in exchange
SWARM: early agent-based modeling language
TRANSIMS: transportation simulation code created at Los Alamos

Appendix 3: Implementation of ABMs
Creating an ABM involves some amount of computer programming, so a researcher’s

ability to effectively utilize this new approach is often proportional to one’s computing skills. But
no very specific computational background is required, since ABMs can be created in a wide
variety of ways. While courses in algorithms and data structures are helpful, the most important
skill to possess for creating an ABM is strong command of some specific programming language,
such as Java, Python, C/C++, C#, and so on. By far the most common question people have who
are new to ABM is ‘What software should I use to build my model?’ This question has many facets
and picking the wrong software for a project can be disastrous. Here we provide some guidelines
based on current technology. Happily, there are good comparisons of existing software packages—
Kravari and Bassiliades (2015), supplementing older ones of Gilbert and Bankes (2002) and
Dibble (2006)—meaning we can be brief, editorializing a bit based on our experience.

There are essentially four distinct ways to create an ABM, (1) code in a native programming
language like Java or Python, (2) write your model in a mathematical or statistical environment
like MatLab, R, or Mathematica, (3) code your model using a software framework for ABM like
RePast, MASON, AnyLogic, FLAME, or MESA, or (4) create your model in a high-level, ABM-
specific software environment like NetLogo or HashAI. Each of these systems has advantages and
disadvantages, so picking one involves trade-offs. Specifically, the lower the number on our list
the faster your model will probably run, eventually, once it is successfully coded and debugged.
However, the coding and debugging time typically declines as the number on our list gets higher.
For example, native Java code is going to run much faster than NetLogo code but it might take
you significantly longer (2-10x) to get a non-trivial model up and running in Java than in NetLogo.
Empirically, many ABMs used for research in economics are built in NetLogo, MASON, RePast,
or Python. These are each mature systems with sizable user bases, reasonable documentation, and
performance good enough to use for research. In finance it is probably the case that more than half
of all ABMs are created in MatLab. This is because that system is designed for high-performance
numerical computation and is especially suitable for solving equations—agents in finance ABMs
often have to solve portfolio optimization, arbitrage, and oher mathematical problems in
determining how to behave. We summarize the characteristics and performance of several of these
systems in table A1. Software systems less often used for ABM research these days include
SWARM (Minar et al., 1996, Terna, 1998, Luna and Stefansson, 2000, Stefansson, 2000),
CORMAS (LePage et al., 2000), and AgentSheets (Repenning, Ioannidou and Zola, 2000), and
we will not say more about these here. For the entries in the table we provide a few points of
description and perhaps one or more references to the literature. NetLogo (Wilensky and Rand,
2015) combines a programming language (having hybrid OOP and functional features) with an
highly configurable development and analysis environment. It is excellent for rapid-prototyping
but too slow for very large models. MASON (Luke et al., 2005) is based on Java and requires users
to code in that language. It has easy-to-use analysis and visualization interfaces. RePast (North,
Collier and Vos, 2006) users typically code their model in Java, C# or C++. It has many features
in common with MASON. RepastPy is a version based on Python. MatLab has good performance.
In some of these software frameworks ABMs can be written very compactly. For instance, Gaylord
and D'Andria (1998) have programmed the Schelling model in 5 lines of Mathematica code!

Software OOP? Programming Compiled? Animations? Speed Max agents
NetLogo yes own language no yes slow 100K
MASON yes Java byte code yes good millions
RePast yes Java, C#, C++ byte code yes good millions

AnyLogic yes Java byte code yes good millions
Mesa yes Python yes yes good millions

MatLab optional own language can be yes good millions

Table A1: Comparison of several software environments for creating ABMs

A newer approach to ABM deserving of brief mention is through programming the video
boards that are part of all modern microcomputers. Graphics processing units (GPUs) have greatly
improved their performance. D'Souza, Lysenko and Rahmani (2007) programmed the Sugarscape
model to run 1,000,000 agents at 25 frames/second while only a few hundred agents could run at
that speed when that model was first created (Epstein and Axtell, 1996). FLAME is an ABM
programming environment designed specifically for GPUs (Kiran et al., 2010).

