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1 Introduction

Twenty years ago, Thomas A. Rietz (1988) showed that infrequent, large drops in consumption

make the theoretical equity premium large. Recent research has resurrected this �disaster�expla-

nation of the equity premium puzzle. Robert J. Barro (2006) measures disasters during the XXth

century, and �nds that they are frequent and large enough, and stock returns low enough relative

to bond returns during disasters, to make this explanation quantitatively plausible. Xavier Gabaix

(2007) extends the model to incorporate a time-varying incidence of disasters, and he argues that

this simple feature can resolve many asset pricing puzzles.

These papers make the simplifying assumption that disasters are permanent. Mathematically,

they model log consumption per capita as following a unit root process plus a Poisson jump.

However a casual look at the data suggests that disasters are often followed by recoveries. The

�rst contribution of this paper is to measure recoveries and introduce recoveries in the Barro-Rietz

model. I �nd that the e¤ect of recoveries hinges on the intertemporal elasticity of substitution

(IES): when the IES is low, recoveries may increase the equity premium implied by the model; but

when it is high, the opposite happens.

A second contribution of the paper is to study additional implications of the disaster model.

�I thank Robert Barro, Xavier Gabaix, Ian Martin, Romain Ranciere, Adrien Verdelhan, and participants in a
BU macro lunch for discussions or comments. Contact information: Boston University, Department of Economics,
270 Bay State Road, Boston MA 02215. Email: fgourio@bu.edu. Tel.: (617) 353 4534.
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Recent empirical research in �nance documents that stock returns are forecastable both in the

time series and in the cross-section. First, in the time series, a low price-dividend ratio forecasts

high excess stock returns and high stock returns. I derive some analytical results which show

that it is not easy to replicate these facts in the disaster model, and requires an IES greater than

unity. Second, in the cross-section dimension, there is substantial heterogeneity across stocks in

their expected (or average) returns. According to the disaster model, the main determinant of an

asset�s average return should be its exposure to disasters. Looking at the cross-section of stocks,

I �nd only moderate support for this story.

2 Measuring Disasters and Recoveries

Figure 1 plots log GDP per capita for six countries (Germany, Netherlands, the U.S., Chile,

Urugay, and Peru). The vertical full lines indicate the start of disasters, and the vertical dashed

lines the end of disasters, as de�ned by Barro.1

In many cases, GDP bounces back just after the end of the disaster. These graphs suggest

that something is pulling GDP back towards the pre-disaster level. This is, of course, what the

neoclassical growth model would predict: following a capital destruction or a temporary decrease

in productivity, labor supply and investment are high, and output converges back quickly to its

steady-state level.

To quantify the importance of recoveries, Table 1 present some statistics using the entire sample

of disasters2 identi�ed by Barro. Barro measures disasters as the total decline in GDP from peak

to through. Using 35 countries, he �nds 60 episodes of GDP declines greater than 15% during the

XXth century. Because the end of the disaster is the trough, this computation implies that GDP

goes up following the disaster. The key question is, How much?

The �rst column reports the average across countries of the cumulated growth in each of the

1The data is from Maddison (2003).
2Except the most recent episodes by Argentina, Indonesia and Urugay, for which the next �ve years of data is

not yet available.
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Figure 1: Log GDP per capita (in 1990 dollars) of Germany, Netherlands, the U.S. and Chile,
Urugay, and Peru. The disaster start (resp.end) dates are taken from Barro (2006), and are shown
with a vertical full (resp. dashed) line.
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in % All disasters (57 events) Disaster greater than 25% (27 events)
Years Growth Loss from Growth Loss from
after Trough from Trough previous Peak from Trough previous Peak
0 -29.8 -41.5
1 11.1 -22.8 16.1 -32.7
2 20.9 -16.8 31.3 -24.2
3 26.0 -13.7 38.6 -20.4
4 31.5 -10.2 45.5 -16.9
5 37.7 -6.1 52.2 -13.4

Table 1: Measuring Recoveries. The table reports the average of (a) the growth from the trough
to 1,2,3,4,5 years after the trough and (b) the di¤erence from the current level of output to the
previous peak level, for 0,1,2,3,4,5 years after the trough.

�rst �ve years following a disaster. The average growth rate is 11.1% in the �rst year after a

disaster, and the total growth in the �rst two years amounts to 20.9%. This is of course much

higher than the average growth across these countries over the entire sample, which is just 2.0%.

The second column computes how much of the �gap� from peak to trough is resorbed by this

growth, i.e. how much lower is GDP per capita compared to the previous peak. At the trough, on

average GDP is 29.8% less than at the previous peak. But on average across countries, this gap

is reduced after three years to 13.7%.

Of particular interest are the larger disasters, because diminishing marginal utility implies

that agents care enormously about them. Columns 3 and 4 replicate these computations for the

subsample of disasters larger than 25%. These disasters are also substantially reversed: a growth

of over 30% in the �rst two years following the disaster nearly erases already half of the decrease

in GDP.

There may be better ways to measure recoveries - for instance , I do not take into account

trend growth3 - but I take from these simple computations that at least half of the disaster is, on

average, eliminated very quickly.

3Many countries have very erratic experiences and it is di¢ cult to de�ne or measure precisely a trend (e.g.,
because of trend breaks).

4



3 A Disaster model with Recoveries and Epstein-Zin utility

How do recoveries a¤ect the predictions of the disaster model? This turns out to be more subtle

than one might think. To study this question, I extend the Barro-Rietz model and allow for

recoveries. For reasons that will become clear, it is useful to introduce Epstein-Zin preferences

(1989): utility is de�ned recursively as

Vt =

��
1� e��

�
C1��t + e��Et

�
V 1��t+1

� 1��
1��
� 1

1��
:

With these preferences, the intertemporal elasticity of substitution for deterministic consumption

paths is 1=� and the risk aversion to a static gamble is �: Risk aversion to a dynamic gamble is

more complicated, because the intertemporal composition of risk matter: for � > �, the agent

prefers an early resolution of uncertainty. The consumption process in the Barro-Rietz model is:

� logCt = �+ �"t; with probability 1� p;

= �+ �"t + log(1� b); with probability p;

where "t is iid N(0; 1): Hence, each period, with probability p, consumption drops by a factor

b: The realization of the disaster is iid and statistically independent of "t at all dates. To allow

for recoveries, I consider the following modi�cation of this process: if there was a disaster in the

previous period, with probability �; consumption goes back up by an amount � log(1� b): (Below

I allow for more complex dynamics.) Hence, when � = � and � = 0, the model collapses to the

Barro-Rietz model; and for � > 0 there is some possibility of recovery.

When � = 0, the risk-free rate and equity premium can be found in closed form:

logRf = �+ ��� (�(� � 1) + �)
�2

2
� log

 
1� p+ p(1� b)��

(1� p+ p(1� b)1��)
���
1��

!
;
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log
ERe

Rf
= �2� � log

�
1� p+ p(1� b)1��
1� p+ p(1� b)��

�
:

For p = 0 or b = 0, we obtain the well-known formulas of the lognormal iid model, which generate

an equity premium puzzle and a risk-free rate puzzle. For p > 0 and b > 0, the equity premium is

increasing in the probability of disasters p and in their size b, and the risk-free rate is decreasing

in the probability of disasters or their size (at least if � � �). Because risk-averse agents fear

large changes in consumption, a small probability of a large drop of consumption can make the

theoretical equity premium large.

For � > 0, I did not �nd any useful closed form solutions, but it is easy to solve numerically

the model. I will use the same parameter values as Barro, except for the intertemporal elasticity

of substitution �; for which I consider a range of possible values. In particular, I use the historical

distribution of disasters b instead of a single value.4 I also follow Barro and assume that government

bonds default with probability 0:4 during disasters, and that the recovery rate is 1� b:With these

parameter values, the equity premium is 0.18% without disasters and 5.6% with disasters and no

government defaults, and �nally 3.5% with disasters and government defaults. Importantly, this

result is in�uenced by the largest historical disasters: if we use exclude from the distribution of b

the ten disasters larger than 40% (which all occurred during World War II), the equity premium

is reduced to 0.8%.

Figure 2 plots the equity premium as a function of the probability of a recovery, for four

di¤erent elasticities of substitution: 1=4 (Barro�s number), 1=2; 1 and 2: In this computation, the

risk aversion � is kept constant equal to 4: Note that the four lines intersect for � = 0 since in

this case, consumption growth is iid, and the IES does not a¤ect the (geometric) equity premium.

Perhaps surprisingly, when the IES is low, the equity premium is increased by the possibility of a

recovery.

To understand this result, it is useful to recall the present-value identity in the case of � = �

4This modi�es slightly the formulas above: an expectation over the disaster size b, conditional on a disaster
occuring, must be added to the formulas.
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Figure 2: Unconditional, log geometric equity premium, as a function of the IES and the proba-
bility of recovery. The risk aversion is � = 4 and the other parameters are as in Barro (2006).

(state separable utility). The price of a claim to fCtg is

Pt
Ct
= Et

X
k�1

�k
�
Ct+k
Ct

�1��
;

hence the fact that a recovery may arise, i.e. that Ct+1; Ct+2; :::; is higher than would have been

expected without a recovery, can increase or decrease the stock price today, depending on whether

� > 1 or � < 1: The intuition is that good news about the future have two e¤ects: on the one

hand, they increase future dividends (equal to consumption), which increases the stock price today

(the cash-�ow e¤ect), but on the other hand they increase interest rates, which lowers the stock

price today (the discount-rate e¤ect). The later e¤ect is stronger when interest rates rise more for

a given change in consumption, i.e. when the intertemporal elasticity of substitution (IES) is low.

Given a low IES, the price-dividend ratio falls more when there is a possible recovery than when

there are no recoveries. This in turn means that equities are more risky ex-ante, and as a result

the equity premium is larger.
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Probability of a recovery � 0.00 0.30 0.60 0.90 1.00

IES = 0.25 3.31 4.62 5.91 7.19 7.64
IES = 0.50 3.31 3.30 3.03 2.26 1.68
IES = 1 3.31 2.69 1.94 1.00 0.54
IES = 2 3.31 2.42 1.52 0.63 0.30

Table 2: Unconditional log geometric equity premium, as a function of the intertemporal elasticity
of substitution IES 1/alpha and the probability of a recovery pi. This table sets risk aversion
theta=4 and the other parameters as in Barro (2006).

When the IES is not low however, recoveries reduce the equity premium. Table 2 summarizes

the results. When the IES is equal to one, the equity premium falls by 1/3 if the recovery occurs

with 60% probability, and the equity premium is divided by three if the recovery occurs with 90%

probability. The intuition is that the decrease in dividends is transitory and thus in disasters stock

prices falls by a smaller amount than dividends do, making equities less risky.

This result is consistent with the literature on autocorrelated consumption growth and log-

normal processes (John Y. Campbell (1999), Ravi Bansal and Amir Yaron (2004)). While Bansal

and Yaron emphasize that the combination of positively autocorrelated consumption growth and

an IES above unity can generate large risk premia, Campbell shows that when consumption growth

is negatively autocorrelated, risk premia are larger when the IES is below unity. Recoveries induce

negative serial correlation, so even though Campbell�s results are not directly applicable (because

the consumption process is not lognormal), the intuition seems to go through.

Clearly the recovery process studied above is too simple: recoveries might not occur right after

a disaster, they sometimes also occur more slowly. Moreover, the size of the recovery is uncertain.

In Gourio (2007), I consider more general recovery processes. A moderate delay does not a¤ect

the results signi�cantly.

Of course, there is no clear agreement on what is the proper value of the IES. The standard view

is that it is small (e.g. Robert Hall (1988)), but this has been challenged by several authors (see

among others Bansal and Yaron (2004), Fatih Guvenen (2006), Casey Mulligan (2004), Annette

Vissing-Jorgensen (2002)). How then, can we decide which IES is more reasonable for the purpose

of studying recoveries? The natural solution is to use data on asset prices during disasters. Figures
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Figure 3: Conditional expected return on equity and bond, as a function of the state, for di¤erent
values of IES and probability of recovery.

3 and 4 depict the implications of the model with recoveries for two levels of IES (:25 and 2). The

baseline disaster model is the case where the probability of recovery is zero. The panels present

the expected equity return, risk free rate and risk premium as well as the P-D ratio, conditional

on the current state (no disaster in the previous period, or a 35% disaster just occurred).

These �gures reveal that when the IES is low (the Barro calibration), a positive probability

of recovery implies very large interest rates following a disasters: as consumers are momentarily

poor, they want to borrow against their future income, which drives the interest rate up. These

huge interest rates are certainly not observed in the data. (Perhaps, people did not anticipate the

recoveries.) The high IES case of course implies interest rates which are much smaller, but it also

implies that the P-D ratio increases slightly following a disaster (compare the two bottom panels

of Figure 4). In contrast, the low IES model implies that the P-D ratio falls. While the P-D

probably does not increase following a disaster, it is not necessarily clear that it falls signi�cantly:

for instance, according to the Shiller data, the P-E ratio was 20.2 in September 1929 before the
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Figure 4: Conditional values of the arithmetic equity premium and P-D ratio, as a function of the
state, for various IES and probability of recovery.

crash, 18.4 one year later, and 17.8 in September 1932 at the trough.5 Obviously earnings fell

dramatically, but the question is, Did prices fall more than earnings or dividends? Similarly,

dividends fall to zero and even become negative in the Great Depression according to NIPA.

Hence, it is not clear which model �ts the data best. If we want to match a low P-D ratio in

disasters, an extension of the model seems required - for instance, if people become more fearful

in disasters (i.e. increase their estimate of p, perhaps as a result of learning), then the P-D

ratio may fall as the equity premium is large, without having a large e¤ect on the interest rate.

Many researchers have argued that the Great Depression signi�cantly a¤ected the expectations of

households in the following years or decades. A numerical example is the following: assume that,

following a disaster, the economy enters a �waiting�state where the probability of disaster is three

times higher than usual. Each period, with probability �, the economy escapes the waiting state,

experiences with probability � a recovery, and return to the normal probability a disaster. I set

5These numbers are for current price over current earnings, rather than the smoothed earnings prefered by Shiller.
Note also that prices did fall temporarily during the Depression, bu my point is that even at the trough it was not
obviously low.
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� = � = 4; � = :99; and � = :3; � = :8 and for simplicity a single disaster size b = 0:4. This

economy has the feature that the P-D ratio falls from 24.4 to 18.8 in disasters, the risk-free rate is

only 2.8% in disasters (versus 1.6% in normal times), and the equity premium is 4.2% in normal

times and 5.8% unconditionally. Hence, introducing a higher likelihood of disasters following a

disaster leads to a lower interest rate spike following a disaster.

4 Return Predictability in the Disaster model

Given the relative success of the disaster model in accounting for the risk-free rate and equity

premium puzzles, it is important to study if the model can also account for other asset pricing

facts, such as the time-series predictability of returns. Empirical research suggests that the excess

stock return is forecastable. The basic regression is

Ret+1 �R
f
t+1 = �+ �

Dt
Pt
+ "t+1;

where Ret+1 is the equity return and R
f
t+1 the risk-free return. As an illustration, John Cochrane

(2007) reports for the annual 1926-2004 U.S. sample: � = 3:83 (t-stat = 2.61, R2 = 7:4%). A key

feature of the data is that using as the left-hand side the equity return Ret+1 rather than the excess

return Ret+1 �R
f
t+1 does not change the results markedly: � = 3:39 (t-stat = 2.28, R

2 = 5:8%).

To generate variation in expected returns over time, we need to introduce some variation

over time in the riskiness of stocks. The natural idea is to make the probability of disaster-time

varying. Hence, consider the following environment: there a representative agent who has CRRA

utility with risk aversion . The disaster probability changes over time according to a monotone

�rst-order Markov process, governed by the transition probabilities F (pt+1jpt); where pt is the

probability of a disaster at time t+ 1; which is drawn at time t: Formally, � logCt+1 = �+ �"t+1

with probability 1� pt, and � logCt+1 = �+ �"t+1 + log(1� b) with probability pt: Assume that

the realization of pt+1 is independent of the realization of disasters at time t + 1, conditional on

11



pt: (This simpli�cation allows to obtain an analytical solution; it implies that the P-D ratio is

conditionally uncorrelated with current dividend growth.) The following result is easy to prove:

Proposition 1 If the probability pt is always small, then (1) the risk-free rate and expected eq-

uity return are decreasing in pt; (2) the equity premium is increasing in pt; (3) the P-D ratio is

increasing in pt if and only if  > 1:

This result implies that the correlation between equity risk premia and price-dividend ratio is

positive if  > 1 and negative (as in the data) if  < 1: The intuition is simple: an increase in p

reduces expected growth, hence people want to save, which decreases both the risk-free rate and

the expected equity return. Because the risk of disaster is higher, the risk premium also increases.

The P-D ratio may go up or down, depending on whether the change in expected return is larger

than the change in expected dividend growth, which depends on the strength of the interest rate

response, and thus on the IES.

This result creates a problem for the simplest model of disasters. First, while most researchers

use  > 1, this generates a counterintuitive positive correlation between the P-D ratio and disaster

probability, and this implies that a high P-D ratio forecasts a smaller risk premium, which is the

inverse of the data. Hence, we need an IES 1= above unity to generate the key �nding of excess

return predictability. But using  < 1 reduces the risk premium and also implies that recoveries

reduce the equity premium.

More fundamentally, there are no parameter values which will generate both the stock return

and excess stock return predictability. The model generates predictability by generating large

changes in interest rates, while in the data predictability is due to time-varying risk premia. The

natural escape route is to separate the IES and risk aversion, and to use the IES to control

movements in the risk-free rate. When the disaster probability is iid, i.e. F (pt+1jpt) = F (pt+1);

and risk aversion � is greater than unity, it is possible to show that the result above still applies:

the P-D increasing in the probability of a disaster p if and only if the elasticity of substitution is
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less than one, i.e. � > 1: Numerical experiments suggest that relaxing the iid assumption for p

does not help signi�cantly. As in Bansal and Yaron (2004), it may be necessary to incorporate an

additional state variable proxying for time-varying risk.

It is also possible to extend the result above to the case of a time-varying size of disaster b:

Formally, assume that � logCt+1 = �+�"t+1; with probability 1�p, and � logCt+1 = �+�"t+1+

log(1� bt), with probability p; that bt follows a �rst-order Markov process and that the realization

of � logCt+1 and bt+1 is independent conditional on bt: Then:

Proposition 2 For p low enough, (1) the risk-free rate and expected equity return are decreasing

in bt; (2) the equity premium is increasing in bt; (3) the P-D ratio is increasing in the size of

disaster bt if and only if  > 1:

Together these two results suggest that the standard calibration of the disaster model with

 > 1 does not �t the predictability evidence: the model will generate that a high P-D ratio

forecasts low expected equity returns; but not that a high P-D ratio forecasts a low excess return

on equity. Gabaix (2007) resolves this tension by assuming that the size of dividends disaster

changes over time, but not the size of consumption disasters. There may be other resolutions of

this conundrum, but they remains to be worked out.

5 Cross-Sectional Implications of the Disaster Model

Empirical research in �nance has documented substantial heterogeneity across stocks in expected

returns. According to the disaster model, this can be traced to the heterogeneity in responses

to �disasters�. The terrorist attacks of 9-11 o¤ers an interesting example. On 9-17-01 (the �rst

day of trading on the NYSE after 9-11), the S&P 500 dropped 4.9%, but some industries fared

very di¤erently: the S&P 500 consumer discretionary index fell 9.8%, the energy index 2.9%, the

health care index 0.6%, while defense industry stocks soared: Northrop Grumman was up 15.6%

and Lockheed Martin 14.7%.

13



Formally, starting in the simple Barro-Rietz setup, consider the following dividend process for

asset i :

� logDi;t+1 = �i + �i"t if no disaster,

= �i + �i"t + �i log(1� b) if disaster.

Hence, assets di¤er both in their trend growth �i as well as exposure �i to �standard business

shocks�and their exposure �i to disasters. The log risk premium on asset i is:

log

�
ERi
Rf

�
= �i��c + log

�
1� p+ p(1� b)��
1� p+ p(1� b)�i��

�
;

hence the risk premia is determined by the standard exposure to �business cycle shocks�and a

new term, the exposure to disasters �i. Assets with high �i will have high average returns. This

hypothesis is not easy to test, because it is hard to measure the sensitivity �i of an asset to

disasters. This section presents two preliminary results using the cross-section of stocks: the �rst

one uses the �natural experiment�of 9-11, and the second one computes the exposure of stocks to

large downside market movements. (Clearly, it would be interesting to look at other assets such

as bonds or options.)

5.1 The 9-11 Natural Experiment

While 9-11 is not a disaster according to Barro�s de�nition, many people feared at the time that

it marked the beginning of a disaster. The heterogeneity across industries in response to 9-11 is

impressive and suggests a natural test: if we take these responses to the 9-11 �shock�as proxies

for the responses to a true disaster, do they justify the di¤erences in expected returns?

Figure 5 plots the mean monthly excess returns (1970-2004) against the return on 9-17 for the

48 industry portfolios constructed by Fama and French. If the disaster story is true, industries

which did well on 9-17 (e.g. defense, tobacco, gold, shipping, coal) should have low average returns,

14



15 10 5 0 5 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Agric

 Food

Soda

Beer

Smoke

T oys

Fun

 Books

Hshld

Clths

Hlth

MedEq

Drugs

Chems

Rubbr

T xtls

BldMt
Cnstr

Steel

FabPr

Mach

ElcEq

Autos

Aero

Ships

Guns

Gold

 Mines

Coal

 Oil

Uti l
 T elcm

PerSv

BusSv

Comps

Chips

LabEq

Paper

Boxes
T rans

Whls l

Rtail

Meals

Banks

Insur

RlEs t

Fin

Other

return on sept 17, 2001

m
ea

n
 m

o
nt

h
ly 

e
xc

e
ss

 r
et

u
rn

 1
97

0
2

00
4

Figure 5: Mean monthly excess return and return on 9-17-01, for 48 portfolios of stocks sorted by
industry. Data from prof. French�s website.

and industries which did poorly (e.g. transportation, aerospace, cars, leisure) should have high

average returns, so we should see a negative relationship. However, the correlation is slightly

positive (0.20). Of course one possible answer is that 9-11 is not the ideal experiment, and some

industries such as coal or aerospace may have been especially a¤ected by 9-11.

Figure 6 performs the same calculation for the 25 size and book-to-market sorted portfolios. In

this case, the correlation is moderately negative (-0.16). Finally the Fama-French factor SMB was

up 0.24%, HML was down -0.93%, UMD was up 2.72%, and the small-value/small-growth excess

return was -0.20%.6 Hence, only HML and the small-value/small-growth excess return have the

correct sign, and the magnitude is not large.

5.2 Large Downside Risk

The second test is to compute the sensitivity of various portfolios of stocks to large declines in the

stock market more generally. Can the disaster explanation account for the cross-sectional puzzles

6SMB is a portfolio long small �rms and short large �rms; HML is long in �rms with high book-to-market and
short �rms in low book-to-market; UMD is long winners (�rms with high return in the past month) and short
losers. All these strategies generate signi�cant excess returns (see Table 4), which are not accounted for by CAPM
or CCAPM betas.
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Figure 6: Mean monthly excess return 1970-2004, and return on 9-17-01, for 25 portfolios of �rms
sorted by size and book-to-market. Data from prof. French�s website.

like value-growth, momentum, small-big which have attracted so much attention in the empirical

�nance literature?

I measure the exposure of assets to large negative events by running the following time series

regression:

Rit+1 �R
f
t+1 = �i + �

d
i

�
Rmt+1 �R

f
t+1

�
� 1�

Rit+1�R
f
t+1

�
<t
+ "it+1;

where Rmt+1 is the market return and R
f
t+1 is the risk-free return. The only change between this

model and the CAPM is that the risk factor is the stock market return conditional on a large

negative return. Securities which have a large �di do badly when the stock market does very badly.

(This can be justi�ed as an approximation to the model above, since the market return in this

case is proportional to consumption growth.) I use monthly data and set arbitrarily t = �10%.7

When I consider the 25 Fama-French portfolios sorted by size and book-to-market (sample:

1932-2005, with 22 �disaster months�), I �nd that this model does not improve on the basic CAPM,

because the �disaster beta�has a correlation over .96 with the standard market beta. The same is
7Since 1926 there have been 29 months where the excess market return is less than -10%.
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Figure 7: Mean excess return (1970-2004) against the disaster beta, computed from the time series
regression (4), for the 48 industry-sorted portfolios.

true when I use the 48 industry portfolios (sample: 1970-2005, with 10 �disaster months�); in this

case the correlation between the disaster beta and the standard beta is 0.90, and �gure 7 shows

clearly that the relation between disaster beta and average return does not exist in these data.

In Table 3, I perform the same regressions for HML, SMB, UMD and small-value-small-growth.

We see that the coe¢ cient �d does not explain very well the mean returns: for UMD, it has the

wrong sign, it is insigni�cant for SV-SG; for HML it is small and borderline signi�cant. Only for

SMB is there some empirical support for the disaster story: small �rms have indeed more negative

returns than large �rms when there is a big negative stock return.

It is plainly not clear that value stocks do worse in large negative events. Figure 8 shows that

there is little discernible di¤erence between the small-growth and small-value portfolios during

the Great Depression. Hence, while small value stocks have higher average returns, it does not

appear that they were much more sensitive to extreme events, as measured by the 1929-1932 crash.

Another simple way to measure the exposure to disasters is to look at the average return during

all the months since 1926 when the monthly excess return on the stock market was less than
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-15%; there are 9 such months (seven from 1929 to 1940, October 1987 and August 1998). These

moments are reported in Table 4. In �ve times out of nine, the small-value portfolios outperformed

the small-growth portfolios; in �ve times out of nine, the HML return was positive; in eight out

of nine, the momentum excess return UMD is positive. There is some supportive evidence for the

SMB asset (small stocks minus large stocks) which return was negative in seven out of nine events.

The main problem with this section is that measuring the exposure to disasters is hard. How-

ever, the preliminary conclusion is that there is little support in the data for disaster explanation

when looking at the cross-section of stock returns (value, momentum, industries), with the excep-

tion of size e¤ects.
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�d t-stat

HML 0.08 1.9
SMB 0.18 4.6
UMD -0.24 4.3
SV-SG 0.02 0.4

Table 3: Beta on Large Negative Returns, for four excess returns.

E (R) E(RjRm < �:1) E(RjRm < �:15)
HML 0.40 -0.68 0.15
t-stat 3.47 -0.53 0.09

SMB 0.24 -2.69 -2.68
t-stat 2.19 -3.63 -1.90

UMD 0.76 4.26 5.97
t-stat 5.01 3.24 2.56

SV-SG 0.49 0.48 0.46
t-stat 4.14 0.41 0.33

Table 4: Mean returns on the HML, SMB, UMD and small growth-small value portfolios, for the
full sample, the sample of market declines greater than ten percent.

6 Conclusion

The disaster explanation of asset prices is attractive on several grounds: �rst, there are �reason-

able�calibrations which can generate a sizeable equity premium. Second, disasters can easily be

embedded in standard macroeconomic models. Moreover, the explanation is consistent with the

empirical �nance literature which documents deviations from log-normality (�fat tails�). Inference

about extreme events is hard, so it is possible that investors�expectations do not equal an objective

probability, due to learning and/or a concern for misspeci�cation.

But precisely because the disaster explanation is not rejected on a �rst pass, we should be

more demanding, and study if it can account quantitatively for other asset pricing puzzles, and

whether it is robust to reasonable extensions such as recoveries. The current paper points toward

some areas which would bene�t from further study.
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