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Abstract 

Recent finance literature highlights the role of technological change in increasing firm specific and 
aggregate stock price volatility (Campbell et al. 2001, Shiller 2000, Pastor and Veronesi 2005). Yet 
innovation data is not used in these analyses, leaving the direct relationship between innovation and 
volatility untested. Our aim is to investigate more closely the relationship between stock price volatility 
and innovation using firm level patent citation data. The analysis builds on the empirical work by 
Mazzucato (2002; 2003) where it is found that stock price volatility is highest during periods in the 
industry life-cycle when innovation is the most ‘competence-destroying’.  Here we ask whether firms 
which invest more in innovation (more R&D and more patents) and/or which have ‘more important’ 
innovations (patents with more citations) experience more volatility. We focus the analysis on firms in 
the pharmaceutical and biotechnology industries between 1974 and 1999. Results suggest that there is 
a positive and significant relationship between idiosyncratic risk, R&D intensity and the various patent 
related measures.  Preliminary support is also found for the ‘rational bubble’ hypothesis linking both the 
level and volatility of stock prices to innovation. 
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1. Introduction 

In recent years there has been increased attention, by both the economics profession 

and the popular press, on the topic of stock price volatility.  Interest peaked after the ‘New 

Economy’ period when many high-tech stocks that were considered overvalued experienced 

a large drop in their share price.  But still now there persists the idea that the ‘knowledge 

economy’ (less unfashionable a term than the New Economy), has resulted in greater 

volatility, especially of small innovative firms which tend to go public earlier in their life-cycle 

than in previous times.  

Yet, in reality, there has been no trend increase of aggregate stock price volatility 

(Schwert 1989; 2002).  Particular periods have been characterized by high volatility, such as 

the 1970’s and the 1990’s, but the increase has not persisted.  Firm specific volatility has, on 

the other hand, experienced a trend increase over the last 40 years (Campbell et al. 2001).  

Various works have highlighted technological change as one of the key factors responsible 

for this increase in firm specific risk, as well as the periodic increases of aggregate stock 

price volatility.  For example, Shiller’s work (2000) has shown that ‘excess volatility’, i.e. the 

degree to which stock prices are more volatile than underlying fundamentals, is highest in 

periods of technological revolutions when uncertainty is greatest.  Campbell et al. (2001) find 

that firm level idiosyncratic risk, i.e. firm specific volatility (as opposed to industry specific or 

market level), has risen since the 1960’s and claim that this might be due to the effect of new 

technologies, especially those related to the ‘IT’ revolution, as well as the fact that small firms 

tend now to go public earlier in their life-cycle when their future prospects are more 

uncertain.  And Pastor and Veronesi (2004) claim that the reason that high tech firms have 

prices that appear unjustifiably high (at the beginning of a ‘bubble’) is not due to irrationality, 

but due to the effect that new technology has on the uncertainty about a firm’s average future 

profits.  The basic idea behind all these works (reviewed further below) is that innovation, 

especially when ‘radical’, leads to high uncertainty hence more volatility. 

Yet none of these studies actually use innovation data.  Innovation is alluded to (e.g. 

the ‘IT revolution’, the New Economy, radical change) but not measured, especially not at the 

firm or industry level1.  The aim of our paper is to better understand the dynamics of stock 

price volatility by seeing whether we can in fact find evidence that stock price volatility is 

related to firm level innovation.  That is, we do not assume that volatility is a sign of greater 

uncertainty due to underlying innovation but instead empirically test for this very relationship.   

                                                 
1 Of the above cited authors, Shiller (2000) comes closest to considering the impact of technology by looking at 
excess volatility during the course of technological revolutions. 



The paper builds on our previous work (Mazzucato and Semmler 1999; Mazzucato 

2002; 2003) where it is found that excess volatility and idiosyncratic risk are highest in 

periods of the industry life-cycle when innovation is the most ‘radical’.  However, while there 

we measured innovation at the industry level (e.g. through a quality index derived from 

hedonic prices), in the current paper we go a step further in linking innovation to volatility by 

using firm level patent data.  The productivity literature on market value and innovation has 

already established a positive relationship between a firm’s market value, its R&D intensity 

and its citation weighted patents (Griliches 1981; Pakes 1985; Hall 1993, Hall, Jaffe and 

Trajtenberg 2005). Here we see whether this type of data can also help us better understand 

volatility dynamics which, as argued above, have not been studied in light of firm specific 

innovation dynamics.   

Both Frank Knight (1921) and John Maynard Keynes (1973), who distinguished ‘risk’ 

from ‘uncertainty’, used technological innovation as an example of true uncertainty which 

cannot be calculated via probabilities like risk2.  We start from the assumption that patents 

that are “more important” are those that are the most uncertain due to the way they challenge 

the status quo, more so at least than incremental innovations (Tushman and Anderson 

1986).  We use citation weighted patents as a proxy for the ‘importance’ of an innovation and 

see whether firms with more ‘important’ innovations experience more volatility.  Specifically, 

we test for the relationship between firm level idiosyncratic risk and the following innovation 

variables: R&D intensity, patent counts, and patents weighted by their citations.  We also 

look at the impact of these variables on the level of price-earnings as this relationship lies at 

the core of the ‘rational bubble’ hypothesis where both the level and volatility of stock prices 

are related to the uncertainty regarding a firm’s average future profits (Pastor and Veronesi 

2004; 2005).    

As in our previous work, we focus our study on one particular sector so that we can 

better relate stock price dynamics to the changing character and intensity of innovation over 

the industry life-cycle (Gort and Klepper 1982).  The biotechnology and pharmaceutical 

industries (from now on biotech and pharma) are particularly interesting to study in this 

regard due to their high rates of patenting and R&D intensity (providing us with ample 

innovation data to study), and due to the way that the search process for innovations has 

changed over the last half century (as documented in Gambardella [1995], Henderson et al. 

                                                 
2 “The practical difference between the two categories, risk and uncertainty, is that in the former the distribution of 
the outcome in a group of instances is known (either from calculation a priori or from statistics of past experience). 
While in the case of uncertainty that is not true, the reason being in general that it is impossible to form a group of 
instances, because the situation dealt with is in a high degree unique…” (Knight, 1921, p. 232-233)     
 



[1999]) — motivating us to also ask whether the relationship between innovation and volatility 

has co-evolved with such transformations.   

Our analysis is carried out in 3 stages.  We first see whether we can replicate the 

results found in the market value (Tobin’s q) and innovation literature (Griliches, 1981; Hall, 

Jaffe and Trajtenberg 2005 from now on HJT) using flow rather than stock variables 

(cumulative and depreciated), since in the case of volatility it is the latest ‘news’ that is 

relevant.  Second, we test for a statistical relationship between idiosyncratic risk and these 

innovation variables in order to explore the hypothesis that technology is the source of the 

increase in firm specific risk (as suggested but not tested in Campbell et al. [2001], and 

Shiller [2000]).  Third, we test the ‘rational bubble’ hypothesis in Pastor and Veronesi (2004) 

by exploring the relationship between the level of price-earnings (P/E) and the innovation 

variables, as well as the direct relationship between idiosyncratic risk and P/E.   

Our results provide preliminary evidence that there is indeed a positive and significant 

relationship between firm specific volatility and firm level innovation. We find that both 

idiosyncratic risk and the level of price earnings are significantly related to R&D intensity, and 

to the various patent related measures used in the analysis. We also find a positive 

relationship between these innovation measures and the level of price-earnings, as is 

predicted by the ‘rational bubble’ hypothesis.  We pay particular attention to the lag structure 

of the independent variables as this provides information on the speed at which the market 

reacts to news regarding innovation.  In this regard it appears that the lag on innovation 

outputs (patents) is lower than that on inputs (R&D), and also that the lags for biotech are 

lower than those in pharma, suggesting that the market reacts more quickly to innovation in 

newer segments of the sector.   

The rest of the paper is organized as follows. Section 2 reviews the literature on 

innovation and stock prices; Section 3 discusses the data used and the variables 

constructed; Section 4 provides descriptive statistics and a discussion of the model selection 

criteria; Section 5 presents the results and Section 6 concludes.  

2. Innovation and Stock Prices (level vs. volatility): a quick review 

Uncertainty in finance models refers to how expectations about a firm’s future growth 

affects its market valuation (Campbell, Lo and McKinley 19973).  Both Knight (1921) and 

                                                 
3 “The starting point for any financial model is the uncertainty facing investors, and the substance of every 
financial model involves the impact of uncertainty on the behaviour of investors, and ultimately, on market prices.”  
(Campbell, Lo and MacKinlay, 1997) 
 



Keynes (1973) highlighted the way that technological innovation is an example of true 

uncertainty, which cannot be calculated via probabilities like risk.  Yet, even though a firm’s 

investment in technological change is a major determinant of its (potential) future growth, few 

finance models link stock price dynamics to innovation variables at the level of the firm and 

industry. The few studies that do relate stock price dynamics to innovation, do so mainly by 

linking changes in the stock price level to innovation, rather than linking changes in volatility 

of stock prices to innovation.  This is ironic given that it is especially the volatility of stock 

prices, more than their level, which should be related to ‘news’ on changes in technology.  In 

this section we review the literature that relates stock price dynamics to innovation, dividing it 

between those contributions that focus on the level of stock returns (2.1), and those that 

focus on the volatility of stock returns (2.2)—neither one using innovation data—and then our 

own contributions which have studied volatility dynamics using industry innovation data (2.3).  

The rest of the paper is then dedicated to studying volatility dynamics using firm level 

innovation data.    

2.1 Innovation and stock prices (level) 

Studies that link the level of stock prices to innovation come principally from the 

applied industrial economics literature which studies innovation and stock prices during the 

industry life-cycle (e.g. Jovanovic and MacDonald 1994; Jovanovic and Greenwood 1999; 

Mazzucato and Semmler 1999) and the productivity literature on market value (Tobin’s q) 

and patents (e.g. Griliches 1981; Hall, Jaffe and Trajtenberg 2005 from now on HJT). 

Jovanovic and MacDonald (1994) make predictions concerning the evolution of the 

average industry stock price level around the “shakeout” period of the industry life-cycle.  

They predict that just before the shakeout occurs the average stock price will fall because the 

new innovation precipitates a fall in product price which is bad news for incumbents.  Building 

on this work, Jovanovic and Greenwood (1999) develop a model in which innovation causes 

new capital to destroy old capital (with a lag) and since it is primarily incumbents who are 

(initially) quoted on the stock market, innovations by new start-ups cause the stock market to 

decline immediately since rational investors with perfect foresight foresee the future damage 

to old capital.  In a study of the US auto industry (1899-1998), Mazzucato and Semmler 

(1999) also relate the dynamics of the average industry stock price to the dynamics of the 

industry ‘shakeout’. 

                                                                                                                                                         
 



Another body of literature that connects stock prices to innovation is that on the 

relationship between a firm’s market value, its stock of R&D, and its stock of patents 

(Griliches 1981; Griliches, Hall and Pakes 1991; HJT 2005).  Using a Tobin’s q equation, this  

literature tries to evaluate whether the market positively values the investment of a firm in 

technological change: if patent statistics contain information about shifts in technological 

opportunities, then they should be correlated with current changes in market value since 

market values are driven by the expectations about future growth.  Given the skewed nature 

of the value of patents, Griliches, Hall and Pakes (2001) make use of patent citation data to 

distinguish important patents from less important ones. Using a Tobin-q equation, they find a 

significant relationship between citation-weighted patent stocks and the market value of firms 

where market value increases with citation intensity, at an increasing rate.  They find that 

while a reasonable fraction of the variance of market value can be explained by R&D 

spending and/or the stock of R&D, patents are informative above and beyond R&D only 

when weighted by citations (unweighted patent applications are far less significant).  The 

market premium associated with citations is found to be due mostly to the high valuation of 

the upper tail of cited patents (as opposed to a smoother increase in value as citation 

intensity increases)4.  A more recent study (HJT, 2005) finds further support for the 

relationship between knowledge assets and market value, highlighting differences between 

sectors: elasticity tests find that the marginal effect of additional citations per patent on 

market value is especially high in knowledge intensive industries such as the pharmaceutical 

industry. R&D stocks are more tightly correlated with market value than patents and patent 

citations stock is more significant than patents stock. 

2.2  Innovation and stock price volatility (with no innovation data) 

The few works that have looked at the relationship between innovation and the 

volatility of stock prices have done so mainly at the aggregate level, and without using 

innovation data.  Shiller’s work has shown that excess volatility is higher during periods 

of technological revolutions (Shiller 2000).  He claims that the efficient market model 

greatly underestimates stock price volatility due to the fact that it does not incorporate 

the social mechanism by which expectations are formed (i.e. animal spirits, herd 

behavior, bandwagon effects). In periods of technological revolutions, such effects are 

strongest due to the increased uncertainty regarding both technology and demand 

(causing investors to be less confident about their own judgments).  
                                                 
4 That is, after controlling for R&D and the unweighted stock of patents, they find no difference in value between 
firms whose patents have no citations, and those firms whose patent portfolio has approximately the median 
number of citations per patent.  There is, however, a significant increase in value associated with having above-
median citation intensity, and a substantial value premium associated with having a citation intensity in the upper 
quartile of the distribution (HJT 2001). 



Campbell et al. (2001) study the idiosyncratic versus systematic nature of volatility 

by decomposing the return of a typical stock into three components: the market wide 

return, the industry specific residual and a firm specific residual.  They use variance 

decomposition analysis to study the volatility of these components over time.  The firm 

specific residual is the idiosyncratic component of risk, while the market wide return 

captures the systematic component of risk.  They find that while aggregate market and 

industry variances have been stable (updating and confirming Schwert’s 1989 finding 

that market volatility did not increase in the period 1926-1997), firm level variance 

displays a large and significant positive trend, actually doubling between 1962 

and1997.  They claim that this increase is related to the impact of the IT revolution on 

various factors including the speed of information flows.  

Finally the work of Pastor and Veronesi (2005) provides interesting insights on the 

relationship between innovation, uncertainty and both the level and volatility of stock 

prices.  They claim that if one includes the effect of uncertainty about a firm’s average 

future profitability into market valuation models, then bubbles can be understood as 

emerging from rational, not irrational, behavior about future expected growth. Building 

on the result in Pastor and Veronesi (2004) that uncertainty about average productivity 

increases market value (because market value is convex in average productivity), they 

extend the model to explain why technological revolutions cause the stock prices of 

innovative firms to be more volatile and experience bubble like patterns.  The basic 

idea is that when a firm introduces a new technology, its stock price rises due to the 

expectations regarding the positive impact of the new technology on its productivity.  

Volatility also rises because risk is idiosyncratic when technology is used on a small 

scale.  But if/once the new technology gets adopted throughout the economy, then risk 

becomes systematic causing the stock price to fall and volatility to decrease.  This 

bubble like behavior is strongest for those technologies that are the most uncertain 

(and the most ‘radical’).   

2.3 Firm level innovation and stock price volatility (with innovation data) 

As none of the studies cited above (2.2) use innovation data, the relationship between 

innovation and volatility remains only a hypothesis. Our earlier work tests this hypothesis 

using firm and industry level innovation data. The fact that most shocks are idiosyncratic to 

the firm or plant makes this imperative (Davis and Haltiwanger, 1992).  In a comparative 

study on the auto and computer industries, Mazzucato (2002) finds that idiosyncratic risk and 



excess volatility (as measured in Shiller [1981]5) are highest precisely during the decades in 

the industry life-cycle in which innovation is the most radical6 and market shares the most 

unstable—the latter due to the ‘competence destroying’ effect of radical innovations on 

industry market structure (Tushman and Anderson 1986).  For this reason Mazzucato and 

Tancioni (2006) argue that both market share instability and stock price volatility are indices 

of competition that ‘capture’ well the dynamics of creative destruction (in the PC industry 

better than entry/exit rates).  

Mazzucato and Tancioni (2005) attempt to generalize the above finding by studying 

whether idiosyncratic risk is higher for those firms and industries that are more R&D intensive 

(and in general more innovative according to sectoral taxonomies of innovation found in 

Pavitt 1984, and Marsili 2001).  The study is first performed on 34 different industries using 

data on industry level stock prices and R&D intensity, and then on firm level panel data for 5 

specific industries that span the highly innovative to low innovative horizon (biotech, pharma, 

computers, textiles and agriculture).  In the latter, firm-level idiosyncratic risk is regressed on  

firm level R&D intensity, for 822 firms between 1974-2003.  It is found that while it is not true 

that more innovative industries are on average more volatile than less innovative ones 

(echoing to some extent the finding in Campbell et al. 2001 that industry level risk has not 

increased), at the firm level a positive and significant relationship is found between 

idiosyncratic risk and R&D intensity.  Interestingly, the relationship is stronger for the biotech 

industry and the textile industry than for pharma and computers.  This may be because 

investors react strongly to news on innovation by firms in uncertain new industries, such as 

biotech or nanotechnology (with high potential growth), as well as to innovative firms in 

relatively static non innovative industries (such as textiles) since the latter ‘stick out’ from the 

crowd.  Firms in innovative but mature industries, like pharma or computers, tend instead to 

provoke less of a reaction since innovation is common (with high average R&D intensity) but 

less radical and uncertain due to the particular stage of the industry in its life-cycle.    

                                                 
5 In Mazzucato and Semmler (1999) and Mazzucato (2002), “excess volatility” is measured as in Shiller (1981), 
i.e. the difference between the standard deviation of actual stock prices (vt) and efficient market prices (v*t):  
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discount at time t+j. 
6 Innovation is measured here using quality change data derived, as in Filson (2001), by dividing hedonic prices 
by actual BEA prices. Hedonic prices are from Raff and Trajtenberg (1997, for autos), and Berndt and Rappaport 
(2000, for computers). In the case of autos, the analysis is supported by the use of an innovation survey by 
Abernathy et al. (1983) which ranks all innovations in the auto industry between 1890 and 1982 in terms of the 
degree to which the innovations altered products and processes.  
 



In the remaining sections of the paper, rather than using indirect or input measures of 

innovation, we use firm level patent citation data (as in the studies reviewed above by Pakes 

1985 and HJT 2001;2005).  Our aim is to see whether the degree of excess volatility of 

returns and thus the dynamics of idiosyncratic risk are indeed positively correlated with more 

“important” innovations as is implied in the works cited above.  We also explore the 

relationship between radical innovation and the level of stock returns, as is implied (but not 

tested) in the work by Pastor and Veronesi (2004; 2005). Before discussing the details of the 

models we review the data, and in particular various issues related to patent citation data.  

3. Data and constructed variables 

3.1 Data  

We study the pharma and biotech industries from 1975 to 1999.  Our sample of firms 

is constructed by merging financial data from S&P (purchased from S&P Custom data dept) 

and USPTO patent data (extracted from the NBER patent citation database included in the 

book/CD by Jaffe and Trajtenberg 2002).  The NBER patent citations database provides 

detailed patent related information on 3 million US patents granted between January 1963 

and December 1999, and all citations made to these patents between 1975 and 1999 (over 

16 million).  For each patent, information on the citations it received (a forward looking 

measure, which captures the relationship between a patent and subsequent technological 

developments that build up on it, i.e. its descendants), and the citations made (a backward 

looking measure which captures the relationship between a patent and the body of 

knowledge that preceded it, i.e. its antecedents). Weighting patents by citations is important 

since studies have found that the distribution of the value of patents is highly skewed, with 

few patents of very high value, and many of low value (a large fraction of the value of the 

stream of innovations is associated with a small number of very important innovations, 

Scherer, 1965).  There is also information on the number of claims, which is often recognized 

as an indicator of the wideness of the patent.  Although in our future work we plan to take into 

account various indices constructed using citations (e.g. the level of generality or originality of 

an innovation)7, in the current work we use only the number of patents for each firm and the 

number of citations received per patent.  

                                                 

7 For example, the degree to which an innovation is ‘general’ or ‘original’ can be measured using indices which 
use citations received and citations made data along with data on particular technological fields. A patent which is 
very general is one which has received citations from other patents in a wide variety of fields.  A patent which is 
instead highly original is one which makes citations to other patents in a limited set of technological fields.  
Inserting this information in our future work will allow us to see whether the market places more/less value on 
certain types of innovations than others.   



We have S&P financial data for 323 pharma firms and 563 biotech firms quoted on the stock 

market between 1950 and 2003.  We use the firm CUSIP code to match firms in the two data 

bases.  Only firms pertaining to the GIC codes (which in 2000 replaced the SIC codes), 

352010 for biotech and 352020 for pharma are included in the analysis.  To merge the two 

databases, we use the patent application date rather than the patent granted date since the 

latter is subject to idiosyncratic changes in the speed of the patent review process (however 

it is only patents granted that are in the database).  The merging of the two databases results 

in a restricted sample: out of a total of 323 pharmaceutical firms and 563 biotech firms in the 

S&P database, the merged sample contains 126 pharma firms and 177 biotech firms.  In 

order to avoid dealing with highly volatile stock price data, we have omitted firms present in 

sample for less than eight years. Since we consider a three-year maximum lag in our 

estimates, this guarantees that data is available for at least five years.  We thus end up with 

63 firms in the pharma industry and 71 firms in the biotech industry8. When we work with the 

larger number of firms (126 and 177 firms in pharma and biotech) the results are not 

qualitatively different, but less significant.  Details on the number of observations employed in 

the estimates and on the sectional dimension are reported in the tables.    

 Figure 1 indicates that the number of firms rose steadily in both industries, slowing 

down in the early 90s for pharma, and in the late 90s for biotech. A look at the herfindahl 

index shows that in both industries, the rise in firms was accompanied by a fall in 

concentration. To deal with unbalanced sample panel estimations, we employ standard 

correction techniques to control for the presence of missing data in some periods.   

We use the following firm level variables from the S&P database: stock price (P), 

dividends (D), revenues (Rev), price-earnings ratio (P/E), market value (MKTV), and R&D. 

We also use the average S&P500 value for all these financial variables9.  The following 

innovation variables are used from the patent database: the annual number of patent 

applications (PAT); patents weighted by citations received (PATW); and patents per R&D, or 

the patent yield which captures the efficiency of R&D (PATY). We also explore the use of 

citations made (i.e. backward citations) but find this measure to be less significant than 

citations received so use only the latter in the final analysis.  

                                                 
8 Other sample selection criteria have been used in the literature. For example, in a related study on spill-overs 
and market value, Deng (2005) omits firms with less than 3 years in the Compustat database.  

9 On average, nearly 95% and 97% of the merged sample is available when financial variables are matched with, 
respectively, R&D intensity and patents weighted by citations received.  

 



The financial variables are monthly; R&D is quarterly; and patents are annual10.  

Following Schwert (1989), the monthly S&P data is used to calculate the volatility of annual 

returns (the standard deviation is calculated over 12 month observations on returns).  We 

use monthly financial data, rather than daily data, since it would be exaggerated to expect 

that quarterly R&D figures and annual patent data have an impact on daily stock prices.  

Furthermore, Campbell et al (2001) analyze volatility using both daily and monthly data and 

do not find qualitative differences (in trends).  

To measure idiosyncratic risk we do not use the variance decomposition method 

used in Campbell et al. (2001) which isolates firm, industry and market level volatility through 

a variance decomposition analysis.  Rather, we use a proxy for idiosyncratic risk (IR) which 

captures the degree to which firm specific returns are more volatile than market level returns: 

the log ratio between the standard deviation of a firm’s return11 and the standard deviation of 

the average industry return (the standard deviation of the S&P500 return for the specific 

industry  to which the firm belongs).  When considering the whole sample of 134 firms in our 

analysis, we also control for (fixed) industry effects with an industry dummy (for biotech).   

The R&D and patent variables are entered in terms of flows rather than stocks.  This 

lies in contrast to the market value and innovation literature (HJT 2005), which instead uses 

stocks (defined applying a Permanent Inventory approach with a 15% depreciation 

assumption).  We use flow variables because while it makes sense to think that it is the stock 

of intangible assets that affects the level of market value, changes in stock prices (hence 

their volatility) are affected mainly by recent ‘news’ that the market did not previously take 

into account (flows not stocks).  Since we are mainly concerned with the determinants of IR 

(which is stationary in mean over time), the use of cumulative and thus trended variables 

such as stocks would render the estimations unbalanced (from the point of view of the 

statistical properties of the data) and thus potentially distorted.  Furthermore, in a study by 

Hall (1993), where R&D is entered both as a stock and as a flow in the market value 

equation, it is found that the flow variable has more explanatory power than the stock 

“…which implies a higher valuation on recent R&D than on the history of R&D spending.” 

(Hall 1993, p. 261)12.    

                                                 
10 The patent application date is listed by year, while patent grant date is listed by month.  

11 The return of a firm’s stock is defined as: 
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12 Hall (1993) notes that the significance of the R&D flow is reduced when cash flow is included as a regressor 
suggesting that at least part of the R&D flow effect arises from its correlation with cash flow. In contrast, the R&D 
stock variable is not sensitive to the inclusion of the cash flow variable.  We test for this below and find that the 
cash flow variable is less significant than it is in Hall (1993).  



3.2 Truncation and other data issues 

Patents citation data are naturally susceptible to two types of truncation problems.  

One has to do with the patent counts and the other one with the citation counts13.  The 

former arises from the fact that as the end date is approached, only a percentage of the 

patents that have been applied for (and are later granted) are available in the data. The 

second truncation problem regards citation counts. As the NBER data ends in 1999, we have 

no information on the citations received by patents in the database beyond this period. 

Although this affects all the patents in the database (patents keep receiving citations over 

long periods, even beyond 50 years), it is especially serious for patents close to the end 

date.  Since every year suffers a different degree of this problem (with the later years 

suffering more), it makes comparison between years difficult.   

There are two main ways to deal with both these truncation problems  The first is the 

fixed effects approach, the second is the structural approach (both reviewed in detail in Jaffe 

and Trajtenberg 2002, Ch. 13).  The fixed effects approach involves scaling citation counts 

by dividing them by the total citation count for a group of patents to which the patent of 

interest belongs (e.g. by period, or by field).  In essence, this means calculating the firm’s 

share of total industry patents14.  The quasi structural approach is a more involved approach 

based on estimating the shape of the citation lag distribution, i.e. the fraction of lifetime 

citations (defined as 30 years after the grant date) that are received in each year after the 

patent is granted (HJT 2005)15.  Unlike the fixed effects approach it allows one to distinguish 

real from artefactual differences between years and fields. For example, one can see 

whether the patents issued in the late 1990’s made fewer citations, after controlling for the 

size and fertility of the stock of patents to be cited, than those before. By doing this, one can 

get the “real” 1975 patents, just as with CPI adjustments.  

                                                 

13 Another problem regarding citations is that since the propensity to cite is not constant, it is important to 
distinguish when an increase in the number of citations (e.g. technological impact of the patent) is “real” as 
opposed to “artefactual”. The latter includes the possibility that in some periods there was “citation inflation”, e.g. 
due to institutional factors (e.g. USPTO practices) and/or differences across fields. 

14 To remove year and/or field effects, the number of citations received by a given patent are divided by the 
corresponding year-field mean, or only by yearly means to remove only year effects.  The justification for the 
correction is to remove factors of time variability that are not related to substantial innovation, as in the case of 
legislative interventions which affect number of patents and citations (e.g. the Bayh-Dole act), or by the truncation 
issue.  The problem with this method is that it does not distinguish between differences that are real and those 
that are artefactual (e.g. if patents in the 1990’s really did have more technological impact, removing the year 
effects ignores this real factor.).   
15 Given the distribution, which is assumed stationary and independent of the overall citation intensity, the authors 
estimate the total citations of any patent for which a portion of its citation life is observed. This is done by dividing 
the observed citations by the fraction of the population that lies in the time interval for which citations are 
observed (HJT, 2005, p. 13) 
 



We follow a slightly modified version of the fixed effects approach.  We divide the 

firm-level data by the average industry citations not the total, since the latter varies with the 

changing number of firms in our unbalanced sample. That is, since the number of firms that 

are present in the sample increases over time16 (as evident in Figure 1), while the innovative 

activity at the firm-level remains relatively stable, the standard fixed effects correction would 

bias downward the measure of innovation17.  Dividing by the yearly average (as opposed to 

the yearly total), means that the correction is not affected by the changing number of firms in 

the sample18.  

Lastly, another way we confront the truncation problem is to test our results on two 

samples. One sample which ends in 1999, i.e. the last year included in the NBER patent 

citation database, and another sample which ends in 1995, before the truncation problem 

becomes serious.  This strategy, which is also followed in HJT (2005), is a crude way of 

getting rid of the most problematic (later) years referred to above and an admission that all 

the truncation adjustments don’t totally solve the problem.   

3.3 The pharma-biotech sector 

As in our previous work on stock price volatility (Mazzucato and Semmler 1999; 

Mazzucato 2002; 2003), we focus on a single sector so to better take into account the 

possible effect of qualitative and quantitative changes in innovation over the industry life-

cycle (not possible in more static cross-section industry studies).  We focus on the pharma 

and biotech industries due to the fact that the high R&D and patenting intensity of these 

industries provides us with ample innovation data, and also because much has been written 

about changes in innovation dynamics in this sector, allowing us to test whether the 

relationships we study have evolved alongside such transformations. For example, 

Henderson et al. (1999) describe the changes that have taken place since the mid 1980’s in 

the innovative division of labor between large pharma firms and small (dedicated) biotech 

                                                 
16The number of firms that are contemporaneously present in the whole sample goes from 31 in 1980 to 187 in 
2003, while the average number of patent applications per firm is (only) doubled in the same period. 
 
17 Furthermore, the FE approach suggested in Jaffe and Trajtenberg (2002) removes the time series variability, 
since the evolution of innovative intensity over time is substantially extracted by the correction. 

18 An example: in 1970, Abbot Technologies has 7 patents, that receive a total of 40 citations, and in the entire 
pharmaceutical industry there are 20 firms, with 107 patents which have 792 citations.  This means that we need 
to first divide 40 by 7 to get the numerator. However, since we don’t want to eliminate the data on patents that 
receive no citations (to distinguish them from those firms that have no patents at all) we add 1 to each citation 
figure so that it is 41 divided by 7, equal to 5.85. Then to adjust for the two types of truncation problems we divide 
5.85 by the total number of citations in the industry (+1), divided by the average number of patents in the industry 
which is 793/107, divided then by the number of firms, 20 = .370.  So the figure in 1970 for Abbot Technologies is 
15.81.    

 



firms.  Similarly, Gambardella (1995) describes how advances in science (enzymology, 

genetics and computational ability) since the 1980’s caused a change in the way that firms 

search for new innovations: a pre 1980 period of "random screening",  and a post-1980 

period of “guided screening” characterized by more scale economies and path-

dependency19.  An important institutional event which affected patenting behavior in this 

period was the 1980 Bayh-Dole act which allowed universities and small businesses to 

patent discoveries emanating from publicly sponsored research (e.g. by the NIH), prompting 

many biotech spin-offs from academia.   

As many patents in the pharma industry do not result in new drugs (Harris, 2002; 

Pisano 2006) 20, we do not assume that patents represent actual innovations (e.g. a new 

drug), but rather signals that the market receives regarding the potential ‘innovativeness’ of a 

firm.  The more patents a firm has the stronger the signal regarding its potential 

innovativeness, and the more citations per patent, the more important (trustworthy) the 

signal.  This lies in contrast with the usual interpretation of R&D as an input and patents as 

an output of the innovation process.  In fact, it might be that because there are so many 

patents in this industry (inflated especially after the 1980 Bayh-Dole act), the market treats 

them as more noisy signals than in other industries, and hence citations take on an even 

more important role as a filtering device.  The biotech part of the sector is in an earlier phase 

of its life-cycle than pharma, and in some respects more innovative (since biotech firms are 

more focused on research, and less on marketing and distribution, than pharma firms), hence 

it is interesting to see whether in biotech, patents are treated as stronger signals of potential 

innovations than in pharma.  It is also interesting to see whether the fact that biotech firms 

are more focused on single research projects, hence less diversified in their research 

portfolio, produces more volatility.   In general, the role of biotech in the innovative division of 

labor (Henderson et al. 1999), affects the degree to which patents act as signals in the 

sector, the speed of the market’s reaction to such ‘news’, and the perceived risk.  

To understand the uncertainty around patents as signals of innovativeness it is 

important to remember that we merged the databases using the patent application date 

(rather than the patent granted date) when there is the highest uncertainty: uncertainty 

whether the patent will be granted, uncertainty whether, even if it is granted, the patent will 

be successful, etc.  And as the approximate lag between the application date and the granted 

                                                 
19 Gambardella (1995) documents that although the guided regime did not increase the number of new molecules 
discovered, it did decrease the failure rate of those tested (hence making the process more efficient).   
 
20 Pisano (2006) reports that it takes an average of 10-12 years for a company to get a drug out on the market. 
Only 10%-20% of drug candidates beginning clinical trials have been approved by the FDA. 
 



date is 3 years, when considering the lag structure of the models below,  a lag of  t-1 on 

patent applications is like a forward lag of t+2 for patents granted.  

4. Descriptive statistics and model selection 

4.1. Descriptive statistics 

Table 1 contains descriptive statistics on the different variables used in the study for 

the (a) full sample, (b) for pharma only, and (c) for biotech only21. The Table contains first the 

information for the three financial variables (market value, price-earnings, idiosyncratic risk) 

and then for the innovation variables, including the productivity of R&D, i.e. the patent yield’ 

(PAT/R&D) used in HJT (2005). 

The average number of patent applications (PAT) per firm is 8.3 (9.5 for pharma and 

nearly 4 for biotech), with large variability in both industries (standard deviations are 17.5 and 

18.4 respectively). Employing a standardized measure of variability (coefficient of variation), 

we observe that patenting activity is more heterogeneous amongst the biotech firms than the 

pharma firms.  In the case of weighted patents (PATW), both the sample mean and the 

standard deviation are much higher for the biotech industry—indicating that although there 

are more patents in pharma, they are on average more ‘important’ in biotech.  Sample 

means and standard deviations of R&D intensity are much higher in pharma than biotech 

(though as is well known, what is counted as R&D in pharma, sometimes also includes 

marketing type activities).  The skewness measure indicates a high degree of asymmetry 

(long right tails) for all the innovation variables, with R&D more skewed in pharma than 

biotech, but patenting more skewed in biotech than pharma. The Kurtosis measure indicates 

that the distributions (in both samples) are also leptokurtic compared to the normal.   

With regards to the financial variables, the level of market value and the level of price 

earnings (MKTVAL and P/E) exhibit a large amount of variation, while idiosyncratic risk (IR) 

appears more concentrated around a normal distribution. They result all positively skewed 

and leptokurtic, with the distribution of IR being closer to the normal.  The average P/E for 

biotech is three times that in pharma, as would be expected given the smaller average size 

of biotech firms, the fact that they often have low earnings (Pisano 2006), and their higher 

innovativeness (evidenced by their higher patent yield) hence higher expected growth.   

                                                 
21 For descriptive purposes, we do not impose the minimum presence condition at this stage. This because our 
aim is to give a more comprehensive summary of the data structure. 



  Contemporaneous correlations between the variables don’t show much significance. 

This evidence is supported by the regression results (below) which show that the 

relationships hold mostly dynamically and, in particular, that patents are correlated with 

lagged R&D intensity.  Even if we do not perform dynamic correlations, we can obtain a 

visual appreciation of the relationships by plotting different variables together over time. From 

Figure 2a and 2b, idiosyncratic risk appears remarkably correlated with both R&D intensity 

and, to a lesser extent in the biotech industry, to citation weighted patents. These figures 

provide a first, albeit simplistic, indication of the co-evolution of idiosyncratic risk and 

innovation—investigated more rigorously below.  

It is interesting to see that in Figure 3 the rise in citation weighted patents is 

accompanied in both pharma and biotech (but more so for biotech) by a rise in market share 

instability22.  This is precisely what would be expected by the literature on ‘competence-

destroying’ innovations (Tushman and Anderson 1986) and gives us a preliminary reason to 

expect that citation weighted patents also affect the volatility of stock prices (as these are 

affected by the expected future market share of a firm).  This result in fact confirms that 

found in Mazzucato (2002): market share instability is highest in periods of the industry life-

cycle when innovation is the most ‘radical’ or competence destroying (discussed in 2.3).    

4.2 Model selection 

In the remaining sections, we test the relationship between the innovation variables 

discussed above and the level and volatility of stock returns (all the variables are entered in 

logs).  We first try to replicate the results found in HJT (2005) regarding the relationship 

between market value, R&D, and patents (Model 1). Second, we regress idiosyncratic risk on 

the innovation variables to test whether firm specific risk is related to innovation, as 

hypothesized (but not tested) in Campbell et al. (2001) (Model 2). Third, we test the 

relationship between innovation and the level and volatility of stock prices found in the 

“rational bubble” hypothesis (Pastor and Veronesi, 2004), by regressing the P/E ratio on 

idiosyncratic risk (IR) (Model 3) and then directly on the innovation variables (Model 4).    

 

 

                                                 
22 The market share instability index is defined in Hymer and Pashigian (1962): |][| 1,
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Specifically, the relationships we estimate are:  
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in Models 1c, 2c and 4c. 
 

The lag structure is chosen on the basis of likelihood ratio tests. The alpha subscript i 

in brackets and the ( )iu  error factor are entered as we allow, alternatively, for fixed and 

random effects. In the pooled panel model case such sectional controls are removed.   

 

In each estimation we include a control for firm size: a firm’s market share (firm 

revenues divided by industry revenues) or, alternatively, the share of a firm’s capitalization 

compared to the industry capitalization. As the former is found to be more significant than the 

latter, we report results in the tables only with market share as the firm size control. 

Controlling for firm size is important due to the fact that small firms tend to be more volatile 

than large firms (in both growth rates and stock prices).  Two dummies are also used to 

control for various aspects of the innovation dynamics discussed in 3.2:  a period dummy to 

test whether the relationships are stronger/weaker in one of the two innovation regimes 

(pre/post 1985); and, when employing the whole sample, an industry dummy to see whether 

the dynamics differ in biotech, the relatively newer segment of the industry23.  

                                                 
23 In each model, we also test a version of equation (c) that includes the patent yield variable (PATY), but we don’t 
report on the results for this variable as it emerges as not significant in all the estimates. 



The panel structure of the data-set suggests to employ as natural model alternatives 

the pooled, the Fixed Effects (FE) and the Random Effects (RE) specifications.  With the FE 

model (alpha subscript i in equations above) firm level factors systematically enter the 

relationships, while in the RE model (the error component ( )iu  in equations above) these 

factors are distributed randomly, i.e. they are an error component which is constant over 

time. The FE model thus presumes that there are omitted variables that have section-specific 

effects, such as tacit knowledge and related managerial capabilities.  HJT (2005) adopt a 

pooled model with period and industry dummies. Aside from the fact that their significant 

results (between market value and innovation) disappear when FE are used (as also in the 

related literature), they do not include FE for two reasons.  First on the grounds that since 

R&D stocks change slowly over time (by construction), the inclusion of FEs would capture 

those systematic components that are deemed related to firm specific R&D strategies, i.e. to 

the independent variable. Second, on the grounds that since firms change their strategies 

over time in response to market signals, the FE model is inappropriate as it presumes 

permanent firm specific effects.   

In our case, the first point is irrelevant since we are dealing with volatile flow data and 

not with slowly-changing stocks, hence FEs are not likely to be excessively correlated with 

the independent variable and thus to capture the sample correlation between the dependent 

and independent variables. Concerning the second point, we believe that even if firm 

strategies vary in response to time-varying market signals, the presence of publicly available 

information on fundamentals (that are likely to be relatively firm-specific) may result in 

systematic cross-sectional factors, reflecting relatively permanent aspects of the firm’s 

fundamentals that are not explicitly taken into account in the model specification24. 

For these reasons, unlike HJT (2005), we do not impose any particular model 

specification and base our choices on statistical information only. The model selection 

procedure is implemented in two steps, first evaluating the statistical relevance of the 

individual (firm) effects and then whether they are correlated with the regressors. This is done 

by testing, via the Breusch-Pagan LM test, for the presence of individual effects against the 

common constant model (pooled estimator), and then testing the null of orthogonality of the 

                                                 
24 We don’t think there is an objective reason to believe that firm specific effects are fixed over time and randomly 
distributed over the sample, as implied in the RE specification. Moreover, the RE model presumes that the section 
specific effects and the explanatory variables are uncorrelated. This assumption is questionable, since it is likely 
that the omitted factors that are relevant for the dependent variable are also relevant in determining the 
explanatory variable (Mundlack, 1978). As regards our specific analysis, the omitted factors no doubt include tacit 
knowledge and managerial capabilities, factors that have relevant effects on both innovative activity and the 
market performance of a given firm. 
 



individual effects, i.e. the RE specification, assuming a FE as alternative hypothesis. In this 

second step the reference evaluation tool is the Hausman test. 

The Breusch-Pagan test rejects the null hypothesis of the pooled model (common 

constant) for nearly the entire set of specifications. A pooled model is selected only for 

Models 2a, 2b and 2c  when employing the biotech sample. In all the other cases, the 

Breusch-Pagan test indicates a RE specification.  According to the Hausman test, a RE 

model is selected for Models 2 (a, b, c) and 4 (a, b, c) when employing the whole sample and 

Models 4 (a, b, c) when employing the pharma sample.  In all the other cases a FE 

specification is selected. The model selection results are presented in detail in tables 2a, 2b 

and 2c (respectively for the whole, pharma and biotech samples) and summarized in column 

1 of Tables 3-4-5.   

5. Results     

The results of the preferred models are summarized in Table 3 for the whole sample 

and Tables 4-5 for the pharma and biotech samples.  Concerning robustness, our estimates 

are substantially unchanged when employing the reduced sample with end date fixed at 1995 

in the place of 1999 (as done also in HJT 2005).  This suggests that our correction for the 

truncation problem, using the modified fixed effects approach discussed above, was efficient. 

Moreover, the estimation results are qualitatively robust to different calibrations of the 

minimum presence criterion25.  

According to the F tests (Pooled and FE model specifications) and Wald tests (RE 

model specifications), the models are all globally significant with the unique exception of 

Model 2a and, marginally, of Model 2b, when employing the biotech sample. The regression 

is thus statistically insignificant when only a standard measure of innovation input is entered 

R&D), while it turns out significant when augmented with patents and in particular weighted 

patents. 

Adjusted R-sq (Pooled model) and overall R-sq statistics (FE and RE specifications) 

signal an acceptable measure of fit for Model 126 and, with the exception of the biotech 

                                                 
25 We have repeated the estimates by selecting a minimum presence condition spanning from three to ten years, 
obtaining qualitatively constant estimates. Even employing no selection at all, the estimates remain relatively 
significant in nearly all models. The main differences are, in this case, a moderate loss of statistical significance, 
in particular for Models 3 and 4 in the case of the biotech sample. 
 
26 In Model 1, the average measure of fit, spans from nearly 24% for the whole sample estimates, to 40% for the 
pharma sample and 37% for the biotech sample. 
 



sector, for Models 3 and 427. The measure of fit is instead weak for Model 2, particularly 

when employing the biotech sample28. It is interesting to note that, when employing the whole 

and the pharma samples the measure of fit improves moving from Model 3 to Model 4. This 

happens irrespective of the specific version of Model 4 (a, b or c), signaling that direct 

measures of innovation outperform our measure of uncertainty (IDRISK) in explaining the 

variability of the P/E ratio. 

Concerning the dynamic specification of the models, best estimates are obtained with 

lagged regressors in all the models. Moreover, by nesting the selected dynamic structures of 

Models 2 to 4, we can infer that innovation precedes idiosyncratic risk in the dynamic 

correlations with the P/E ratio. If we consider the whole sample, from Model 3 we obtain a lag 

1 for IDRISK, while for Model 4 we select a lag 3 for RD/REV and a lag 2 for PAT-PATW. 

This result is consistent with the selection of a lag 2 and 1 (respectively for RD/REV and 

PAT-PATW in Model 2, and it is an indication of the validity of our theoretical hypothesis. In 

this respect, consistent result are obtained also for the pharma and biotech estimates, i.e. the 

dynamics of the P/E ratio depends on lagged uncertainty, which in turn depends on lagged 

measures of innovation, with innovation preceding idiosyncratic risk. 

When the estimations are done employing the FE model, the introduction of the 

biotech industry dummy (in the case of the whole sample) does not make sense.  Hence, in 

the case of FE model estimates the industry dummy estimates are not present. Yet,  by 

imposing a RE model specification irrespective of the indications of the Hausman test and 

maintaining the industry control, we find that the sign and significance of the biotech dummy 

is always significant, with a negative sign in model 1 (i.e. biotech firms have on average 10% 

less market value than the sample mean), a positive sign in Model 2 (biotech firms 

experience on average 30-35% more idiosyncratic risk than the sample mean), and a 

positive effect in Models 3 and 4 (biotech firms have on average 35% higher P/E than the 

sample mean). Considering the final estimates reported in Table 3, for RE Models 2 and 4, 

the dimension of the industry specificity can be derived by comparing the estimated value of 

the biotech dummy with that of the constant term. The biotech industry dummy is always 

positive and significant. 

   

                                                 
27 For Model 3 the average fit spans respectively nearly 11%, 18% and 4%. For Model 4 they are, respectively, 
nearly 25%, 22% and 2%. 
 
28 The fit in this case is, on average, nearly 5% for the whole and pharma samples and 1% for the biotech sample. 



The inclusion of the post 1985 period dummy resulted statistically significant for 

Models 2, 3 and 4 (spec. a, b and c) in the whole sample, in Models 2a, 1, 3 and 4 (all specs) 

in the pharma sample and in Model 1 (all specs) signaling the possibility of a structural break 

in the dynamics of volatility after 1985, i.e. that there is more firm specific volatility in the 

second period, a result confirmed in the work of Campbell et al. (2001). We plan to study this 

phenomenon more in our future work, trying to link it to changes in the search (innovation) 

regimes discussed in Gambardella (1995) and elsewhere.  

Column 5 in Tables 3 and 4 shows that the sign for the control of firm size (market 

share) is as expected:  firm size has a positive effect on the level of market value, but a 

negative effect on volatility and the price-earnings ratio.  That small firms experience more 

volatility, in both growth and stock prices, is a well known phenomenon.  The fact that small 

firms also have high price-earnings is easier to interpret for highly innovative firms who have 

low earnings but high potential growth. It is less easy to interpret for those small firms that 

are not particularly innovative, but we cannot look into this unless we put their innovativeness 

as the dependent variable (something we may explore in our future work).  The use of the 

firm’s capitalization share as the control for firm size instead results statistically insignificant 

in Models 3-4 for the whole sample, in Models 2-3 for the pharma sample and in Model 4 for 

the biotech sample. It is interesting to highlight that, with the exception of Model 3 for the 

biotech sample, the control for firm size is never significant when employing the FE 

estimator, signaling that this effect is relatively stable over time and captured by the firm 

specific dummies (its presence does not alter the qualitative and quantitative results of the 

estimates).   

In what follows we review the results from Models 1-4, commenting only on the effect 

that the various innovation variables have on market share, idiosyncratic risk and price-

earnings.   

Model 1: Market value and innovation  

  Whole sample estimation results for Model 1 illustrate that R&D intensity, patent 

counts, and weighted patents have a positive and significant effect (each at the 1% level) on 

the level of market value.  It is interesting that positive results arise even when using flow 

data, instead of the usual stock measures used in the market value and innovation literature 

(HJT 2005).  Furthermore, the introduction of the simple patent count does not lead to a 

statistically insignificant R&D intensity coefficient, as it does when using stock measures.    

When the patent count variable is entered in 1b, the R&D intensity coefficient is 

slightly reduced in size, signaling that there is a certain degree of correlation between R&D 



intensity lagged 2 years and patent applications lagged 1 year.  When we run the pharma 

and biotech samples separately, PAT and PATW remain significant at the 1% level, while the 

reduction in the size of the coefficient for R&D intensity is stronger. In particular, in Models 1b 

and 1c estimated over the biotech sample the R&D intensity coefficient turns out 

insignificant, signaling the presence of a higher correlation between PAT and R&D intensity 

in this part of the industry (not surprising given the higher mean patent yield in biotech).   The 

preferred lag for R&D intensity is 3 in the pharma and 2 in the biotech sample, while the 

preferred lag for patents is 1 in the pharma sample and 2 in the biotech sample29. These 

results suggest that the market reacts quicker to news on patents than to news on R&D, 

most probably due to its understanding of the lengthy process of research in this industry 

(Pisano 2006).   

When patents are weighted by citations received (1c) the estimated coefficients are 

smaller in size (due to the augmented average dimension induced by the weights) while their 

statistical significance is maintained, irrespective of the specific sample being considered.  

When employing patents weighted by citations made, rather than received, the R&D intensity 

coefficient resulted weaker in both size and statistical terms.  In sum, the fit for Model 1 is 

consistent with the result of HJT [2005], even if it does not improve when patents are 

weighted by citations received (as it does in that study). The introduction of the patent yield 

variable proved insignificant.  

Model 2: Idiosyncratic risk and innovation  

In Model 2 we evaluate the hypothesis that idiosyncratic risk is related to firm level 

innovation, as proxied by R&D intensity, patents and weighted patents.  Considering the 

whole sample estimates, we find that the innovation variables are significant, but less so here 

than in Model 1.  R&D intensity is always significant at the 5% level, even when patent 

measures are included as well.  Patent counts are significant at the 5% level, while weighted 

patents are significant at the 1% level.  Thus unlike market value in Model 1, it appears that 

volatility reacts more strongly to citation weighted patents (i.e. more important patents) than 

simple patent counts.  

As in Model 1 the lag on R&D is higher than that on patents (2 and 1 years 

respectively), in line with the results from Model 1.  The lags we find seem reasonable as 

                                                 
29 To better investigate this dynamic relationship, we have regressed patent applications on different lags of R&D 
intensity. The best fit is obtained when the explanatory variable is entered with 2 lags in the whole and in the 
pharma samples and contemporaneously in the biotech sample. 



they suggest that R&D investment takes more time than patents to have an effect on 

volatility. As in Model 1, the patent yield is insignificant.  

When we ran the pharma and biotech samples separately, we found that in the case 

of pharma the significance of R&D intensity rose (to the 1% level), while the significance of 

patents and weighted patents remained unchanged (respectively, at the 5% and 1% levels).  

The patent yield resulted insignificant again.  The lag on R&D intensity for pharma is lower (1 

lag) than that obtained in the combined sample (2 lags), suggesting that the market takes 

less time to react in this older segment of the industry (perhaps because it observes it less 

intensely through specialized market analysts who are more focused on new emerging 

sectors, like biotech and nanotechnology). The fact that we select the same lag structure for 

innovation input and output measures might signal that the market foresees the patent 

application given the spending on R&D that has already occurred (a hypothesis we are 

currently investigating further).  In the case of the biotech sample, R&D intensity is 

insignificant irrespective of the specification being considered, while PAT and PATW remain 

significant, respectively at the 5 and 1% levels.   

Model 3: Price-earnings ratios and idiosyncratic risk (rational bubble) 

Pastor and Veronesi (2004) claim that if one includes the uncertainty about a firm’s 

average future profitability into market valuation models, then bubbles can be understood as 

emerging from rational behavior about expected future profitability30.  As discussed above, 

this model predicts a positive relationship between the level and volatility of stock returns, 

both increasing when new technologies first emerge, then falling when the uncertainty 

around the technologies decreases. With Models 3 and 4 we evaluate these hypotheses 

empirically: we first regress price-earnings on idiosyncratic risk (Model 3), and then price-

earnings on the various innovation measures (Model 4).  

In Model 3 we obtain a positive and statistically significant coefficient for idiosyncratic 

risk, at the 5% level in the whole sample as well as in the pharma sample. No relevant 

relationship is found when considering the biotech sample. The best estimates are obtained 

when IR is entered, respectively for the whole, pharma and biotech samples, with 1 lag, 2 

lags and contemporaneously.  The lack of evidence in favor of the Pastor and Veronesi 

(2004) hypothesis in the biotech sample is potentially related to the relevant reduction in 
                                                 

30 Pastor and Veronesi (2004) use the Market to Book ratio (M/B), which replaces the P/D ratio employed in the 
theoretical derivations of Gordon’s growth formula, on the grounds that dividends are not paid out by small start 
ups. We instead use P/E instead of P/D since both earnings and dividends, are proxies for the “fundamental” 
value underlying stock movements. 



sample dimension due to missing values for P/E. By relaxing the minimum presence criterion 

from 8 years to 5 years, the relationship turns out significant, even if only at a 10% level. The 

relationship between the level of price-earnings and the volatility of firm specific returns, also 

finds support in the empirical literature on the high frequency relationship between prices (or 

returns) and market volatility31.     

Model 4 Price earnings and innovation 

Finally, we regress P/E on the various innovation variables used above. Considering 

the whole sample estimates, R&D intensity is always significant at the 5% level, but unlike 

Model 1 and 2, the patent count variable is insignificant. Weighted patents are instead 

positive and significant at the 5% level. The lag structure is consistent with that obtained for 

Models 2 and 3 (see discussion on lag structure above).   

As already discussed, the biotech dummy is positive and significant, indicating that on 

average biotech firms have a P/E ratio 30% higher than the sample mean.   This is to be 

expected given that small innovative biotech firms often have low earnings, so that their 

stock valuation is determined largely by their investment in innovation (note the higher mean 

P/E for biotech firms in Table 1).    

Considering the pharma section estimates, results are basically unchanged, with both 

R&D intensity and PATW coefficients (Model 4c) increasing significance from the 5% level to 

the 1% level. Differently, when the regressions are conducted employing the biotech sample, 

both PAT and PATW are insignificant, while R&D intensity is significant at the 1% level.   

In sum, the positive relationship emerging between P/E and innovation provides 

support to the rational bubble model in Pastor and Veronesi (2004; 2005) where it is 

assumed, but not proved, that P/E should be higher for firms that introduce radical 

technologies.   

6.  Conclusion   

Our study provides empirical support to the assumption found in recent finance 

literature that the volatility of stock prices (both aggregate and idiosyncratic) is related to 

innovation.  We use firm level R&D and patent data (citation weighted) to test whether firms 

that are ‘more innovative’ are characterized by higher (than average) volatility of stock 
                                                 
31 The rationale is that increasing portfolio risk is compensated by augmented expected returns. The finding of an 
often significant coefficient for volatility in returns regressions conducted with ARCH-in mean specifications in 
GARCH modeling for financial time series directly accounts for this relationship.  
 



returns and levels of market value and P/E.  We find that both the level and volatility of stock 

prices is in fact related to innovation.  In particular, the positive correlation between 

innovation and idiosyncratic risk —provides us with important insights on how changes in the 

‘real’ structure of production affect stock price volatility, beyond common explanations related 

to irrational’ exuberance and ‘animal spirits’.  

The lag structure of the innovation variables provides insights into the speed at which 

the market reacts to innovation ‘signals’.  Lags are higher for R&D than for patents, 

suggesting that the market reacts more quickly to signals regarding innovation outputs than 

inputs.  In fact, it is sensible to think that uncertainty is in fact highest at the time a patent is 

applied for, since this includes the uncertainty regarding whether the patent will be granted, 

as well as uncertainty regarding the effect of the patent (if granted) on firm growth. This is 

especially true in the pharma industry where there is a high patenting rate but a very low rate 

of new drug discovery (Orsenigo, Dosi and Mazzucato 2006).  Pisano (2006), in fact, claims 

that one way that the pharma and biotech industries differs from other high tech industries, 

such as computers and software, is the profound and persistent uncertainty of the R&D 

process due to the limited knowledge of human biological systems (as opposed to chemical 

or electronic)32.    

We find that volatility is higher in the case of small firms (proxied by market share) 

and in the post 1985 period, characterized by a more guided search regime (due to scientific 

and organizational changes discussed in Gambardella 1995).  The higher volatility in the 

latter period is most likely related to the fact that this period is characterized by an ‘inflation’ 

of patents (due to the effect of the 1980 Bayh-Dole act on patenting behavior), which reduces 

their reliability as a ‘signal’ of real innovation (hence more mistakes made by investors).  

Though the fact that weighted patents have a stronger effect on volatility (as well as P/E) 

than simple patent counts, suggests that the market is able to, at least partially, filter through 

this noise.  

Support is found for the ‘rational bubble’ hypothesis in Pastor and Veronesi (2004), 

through the positive relationship between the P/E ratio and the innovation variables (as well 

as through the positive relationship found between P/E and idiosyncratic risk).  Interestingly, 

it is only in Model 4 (with P/E as the dependent variable), that the patent yield variable 

proves significant, suggesting that of all the dependent variables tested, it is P/E that best 

captures the ‘efficiency’ of the innovative process (more output per innovation input).  This 

supports the view that price-earnings are guided by expected future profitability of highly 
                                                 
32 This is one of the reasons for its low R&D productivity, a delusion for those that hoped that biotech’s more 
nimble structure would save pharma’s low turnout of new drugs. 



innovative firms. The fact that most biotech companies have no earnings (except the very big 

ones like Amgen and Genentech), means in fact that their value is determined almost 

exclusively by expectations regarding their ongoing innovation projects. Yet the fact that the 

R&D process is so lengthy and the projects so uncertain, means that valuation of firms is full 

of mistakes.  The corrections that emerge from this trial and error process are no doubt partly 

responsible for the stock return volatility associated with the various innovation variables.  

An interesting aspect of our results is that we reproduce the basic findings in the 

market value and innovation literature (HJT 2005) using flow rather than stock variables (for 

both R&D and patents), suggesting that more work should be done looking at the different 

effect of innovation flows and stocks on stock prices.  We had conjectured that flows are 

more relevant when studying volatility dynamics, but they are also relevant in explaining 

changes in the level of market value.  Another area that we wish to explore further is how 

stock price dynamics respond to particular characteristics of innovation, i.e. the degree to 

which patents are more ‘general’ or ‘original’ (as defined in Jaffe and Trajtenberg 2002, see 

fn 7), and the temporal dimension of patent citations (recent vs. old citations, which is also  

related to the issue of flows vs. stocks above).  
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Figure 2 Dynamic correlations    
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2b) Idiosyncratic risk (IR) and weighted patents (corrected for truncation) 

 

 

 

 

 



 

 

 

Figure 3  Innovation and market share instability 
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Biotech: Market Share Instability Index vs. PATW
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Table 1 Descriptive statistics 

WHOLE MKTVAL PE IR_SP500 IR_IND RD/REV PAT PATW PATYIELD

 Mean 5917.147 86.381 0.088 0.085 0.094 8.309 1.457 0.124
 Median 787.646 25.408 0.071 0.071 0.054 1.000 0.058 0.001
 Maximum 171234.700 9926.505 0.779 2.222 8.413 155.000 69.818 12.870
 Minimum 1.697 0.423 -0.029 -0.266 0.000 0.000 0.000 0.000
 Std. Dev. 17573.270 427.242 0.072 0.112 0.327 17.527 4.201 0.566
 Skewness 5.328 16.312 2.685 9.574 18.844 3.325 9.132 14.757
 Kurtosis 35.938 324.173 17.848 167.215 434.910 16.536 121.885 288.691

PHARMA MKTVAL PE IR_SP500 IR_IND RD/REV PAT PATW PATYIELD

 Mean 7166.306 43.123 0.077 0.081 0.119 9.530 1.237 0.091
 Median 998.557 22.768 0.063 0.068 0.078 1.000 0.105 0.003
 Maximum 171234.700 4108.527 0.420 0.420 8.413 118.000 22.000 3.890
 Minimum 1.697 4.357 -0.029 -0.083 0.000 0.000 0.000 0.000
 Std. Dev. 19589.670 158.310 0.058 0.061 0.366 18.407 2.598 0.288
 Skewness 4.724 21.204 1.503 1.135 17.009 2.772 3.846 6.548
 Kurtosis 28.515 531.733 6.691 6.210 350.434 11.392 21.954 59.816

BIOTECH MKTVAL PE IR_SP500 IR_IND RD/REV PAT PATW PATYIELD

 Mean 1422.355 242.034 0.126 0.101 0.004 3.913 2.252 0.240
 Median 234.938 56.036 0.105 0.082 0.002 0.000 0.000 0.000
 Maximum 39131.630 9926.505 0.779 2.222 0.066 155.000 69.818 12.870
 Minimum 3.731 0.423 -0.027 -0.266 0.000 0.000 0.000 0.000
 Std. Dev. 3708.635 848.918 0.100 0.209 0.006 13.023 7.499 1.077
 Skewness 6.007 8.576 2.778 6.393 5.693 8.181 6.559 9.124
 Kurtosis 52.096 87.553 14.786 60.349 52.081 85.894 51.626 96.567  

  

Table 2a  Model selection tests (whole sample) 



Equation Step Test Hypotheses Chi-sq (5) P Selected

1a 1 Breush-Pagan H0: Pool;  H1: RE 3795.39 0.000 RE
1a 2 Hausman H0: RE;    H1: FE 170.37 0.000 FE
1b 1 Breush-Pagan H0: Pool;  H1: RE 4041.80 0.000 RE
1b 2 Hausman H0: RE;    H1: FE 114.41 0.000 FE
1c 1 Breush-Pagan H0: Pool;  H1: RE 3964.02 0.000 RE
1c 2 Hausman H0: RE;    H1: FE 126.64 0.000 FE

2a 1 Breush-Pagan H0: Pool;  H1: RE 4.87 0.027 RE
2a 2 Hausman H0: RE;    H1: FE 2.36 0.501 RE
2b 1 Breush-Pagan H0: Pool;  H1: RE 5.75 0.016 RE
2b 2 Hausman H0: RE;    H1: FE 4.20 0.379 RE
2c 1 Breush-Pagan H0: Pool;  H1: RE 6.23 0.012 RE
2c 2 Hausman H0: RE;    H1: FE 4.78 0.310 RE

3 1 Breush-Pagan H0: Pool;  H1: RE 231.69 0.000 RE
3 2 Hausman H0: RE;    H1: FE 8.21 0.042 FE

4a 1 Breush-Pagan H0: Pool;  H1: RE 236.95 0.000 RE
4a 2 Hausman H0: RE;    H1: FE 3.25 0.354 RE
4b 1 Breush-Pagan H0: Pool;  H1: RE 237.10 0.000 RE
4b 2 Hausman H0: RE;    H1: FE 3.57 0.467 RE
4c 1 Breush-Pagan H0: Pool;  H1: RE 239.06 0.000 RE
4c 2 Hausman H0: RE;    H1: FE 3.85 0.427 RE

 

 

 

Table 2b  Model selection tests (pharma sample) 

Equation Step Test Hypotheses Chi-sq (5) P Selected

1a 1 Breush-Pagan H0: Pool;  H1: RE 2057.92 0.000 RE
1a 2 Hausm an H0: RE;    H1: FE 85.86 0.000 FE
1b 1 Breush-Pagan H0: Pool;  H1: RE 2503.12 0.000 RE
1b 2 Hausm an H0: RE;    H1: FE 85.61 0.000 FE
1c 1 Breush-Pagan H0: Pool;  H1: RE 2346.28 0.000 RE
1c 2 Hausm an H0: RE;    H1: FE 221.51 0.000 FE

2a 1 Breush-Pagan H0: Pool;  H1: RE 195.20 0.000 RE
2a 2 Hausm an H0: RE;    H1: FE 27.59 0.000 FE
2b 1 Breush-Pagan H0: Pool;  H1: RE 195.50 0.000 RE
2b 2 Hausm an H0: RE;    H1: FE 32.87 0.000 FE
2c 1 Breush-Pagan H0: Pool;  H1: RE 193.93 0.000 RE
2c 2 Hausm an H0: RE;    H1: FE 33.43 0.000 FE

3 1 Breush-Pagan H0: Pool;  H1: RE 124.99 0.000 RE
3 2 Hausm an H0: RE;    H1: FE 9.49 0.023 FE

4a 1 Breush-Pagan H0: Pool;  H1: RE 150.38 0.000 RE
4a 2 Hausm an H0: RE;    H1: FE 3.3 0.347 RE
4b 1 Breush-Pagan H0: Pool;  H1: RE 150.60 0.000 RE
4b 2 Hausm an H0: RE;    H1: FE 4.71 0.318 RE
4c 1 Breush-Pagan H0: Pool;  H1: RE 149.78 0.000 RE
4c 2 Hausm an H0: RE;    H1: FE 5.66 0.226 RE

 

 

Table 2c  Model selection tests (biotech sample) 



Equation Step Test Hypotheses Chi-sq (5) P Selected

1a 1 Breush-Pagan H0: Pool;  H1: RE 1226.74 0.000 RE
1a 2 Hausm an H0: RE;    H1: FE 10.92 0.012 FE
1b 1 Breush-Pagan H0: Pool;  H1: RE 1091.50 0.000 RE
1b 2 Hausm an H0: RE;    H1: FE 9.72 0.045 FE
1c 1 Breush-Pagan H0: Pool;  H1: RE 1104.62 0.000 RE
1c 2 Hausm an H0: RE;    H1: FE 9.64 0.048 FE

2a 1 Breush-Pagan H0: Pool;  H1: RE 0.44 0.505 POOL
2b 1 Breush-Pagan H0: Pool;  H1: RE 0.63 0.427 POOL
2c 1 Breush-Pagan H0: Pool;  H1: RE 0.59 0.442 POOL

3 1 Breush-Pagan H0: Pool;  H1: RE 59.66 0.000 RE
3 2 Hausm an H0: RE;    H1: FE 104.82 0.000 FE

4a 1 Breush-Pagan H0: Pool;  H1: RE 65.10 0.000 RE
4a 2 Hausm an H0: RE;    H1: FE 15.60 0.001 FE
4b 1 Breush-Pagan H0: Pool;  H1: RE 70.07 0.000 RE
4b 2 Hausm an H0: RE;    H1: FE 15.38 0.004 FE
4c 1 Breush-Pagan H0: Pool;  H1: RE 69.00 0.000 RE
4c 2 Hausm an H0: RE;    H1: FE 14.53 0.005 FE

 

 

 

 

 

Table 3 Estimation results (whole sample) 



Model (Spec) Const / [s.e.] Contr / [s.e.] Dummy BIO* Dummy 85 Regr.1 (lag) Est / [s.e] Regr.2 (lag) Est / [s.e]

     1 - Dep variable: log MKTVAL;    Number of obs = 1591, sectional dimension = 134 

1a (FE) 3.697*** 15.794*** 1.494*** log RDREV(2) 0.161*** - -
[0.070] [1.305] [-] [0.073] [0.055] [-]

R-sq: within = 0.330; between = 0.111; overall = 0.192 
F(3, 1454) = 238.70, Prob > F = 0.000

1b (FE) 3.635*** 15.498*** 1.578*** log RDREV(2) 0.153*** log PAT(1) 0.383***
[0.071] [1.294] [-] [0.072] [0.054] [0.071]

R-sq: within = 0.343; between = 0.203; overall = 0.271 
F(4, 1453) = 189.87, Prob > F = 0.000

1c (FE) 3.651*** 15.723*** 1.615*** log RDREV(2) 0.151*** log PATW(1) 0.283***
[0.071] [1.297] [-] [0.072] [0.055] [0.065]

R-sq: within = 0.338; between = 0.182; overall = 0.254
F(4, 1453) = 185.88, Prob > F = 0.000

     2 - Dep variable: log IDRISK;    Number of obs = 1459, sectional dimension = 134 

2a (RE) 0.114*** -0.475*** 0.035** 0.013 log RDREV(2) 0.019** - -
[0.017] [0.189] [0.018] [0.014] [0.009] [-]

R-sq: within = 0.002; between = 0.094; overall = 0.046 
Wald chi2 (4) = 16.95, Prob > chi2 = 0.000

2b (RE) 0.112*** -0.637*** 0.035** 0.008 log RDREV(2) 0.020** log PAT(1) 0.027**
[0.017] [0.202] [0.018] [0.014] [0.009] [0.012]

R-sq: within = 0.004; between = 0.120; overall = 0.046 
Wald chi2 (5) = 22.27, Prob > chi2 = 0.000

2c (RE) 0.112*** -0.643*** 0.036** 0.008 log RDREV(2) 0.020** log PATW(1) 0.030***
[0.014] [0.197] [0.018] [0.014] [0.009] [0.012]

R-sq: within = 0.005; between = 0.138; overall = 0.046 
Wald chi2 (5) = 24.54, Prob > chi2 = 0.000

      3 - Dep variable: log PE;    Number of obs = 764, sectional dimension = 77 

3 (FE) 3.035*** -0.783 0.351*** log IR(1) 1.075** - -
[0.085] [1.415] [-] [0.063] [0.521] [-]

R-sq: within = 0.051; between = 0.091; overall = 0.111 
F(3, 684) = 12.26, Prob > F = 0.000

     4 - Dep variable: log PE;    Number of obs = 775, sectional dimension = 79 

4a (RE) 2.966*** -1.117 0.803*** 0.348*** log RDREV(3) 0.552** - -
[0.152] [1.071] [0.227] [0.064] [0.261] [-]

R-sq: within = 0.041; between = 0.208; overall = 0.255 
Wald chi2 (4) = 51.36, Prob > chi2 = 0.000

4b (RE) 2.953*** -0.985 0.796*** 0.321*** log RDREV(3) 0.558** log PAT(2) 0.100
[0.152] [1.075] [0.227] [0.067] [0.261] [0.076]

R-sq: within = 0.043; between = 0213; overall = 0.245 
Wald chi2 (4) = 53.12, Prob > chi2 = 0.000

4c (RE) 2.953*** -0.929 0.795*** 0.310*** log RDREV(3) 0.534** log PATW(2) 0.146**
[0.152] [1.074] [0.228] [0.066] [0.261] [0.070]

R-sq: within = 0.048; between = 0.207; overall = 0.243 
Wald chi2 (4) = 55.68, Prob > chi2 = 0.000

 

 

 

Table 4  Estimation results (pharma sample) 



Model (Spec) Const / [s.e.] Contr / [s.e.] Dummy 85 Regr.1 (lag) Est / [s.e] Regr.2 (lag) Est / [s.e]

     1 - Dep variable: log MKTVAL;    Number of obs = 825, sectional dimension = 63 

1a (FE) 4.381*** 19.940*** 1.781*** log RDREV(3) 0.186*** - -
[0.091] [2.334] [0.078] [0.060] [-]

R-sq: within = 0.454; between = 0.131; overall = 0.318
F(3, 759) = 210.39, Prob > F = 0.000

1b (FE) 4.170*** 19.258*** 1.522*** log RDREV(3) 0.157*** log PAT(1) 1.015***
[0.091] [2.229] [0.080] [0.057] [0.117]

R-sq: within = 0.503; between = 0.360; overall = 0.477 
F(4, 758) = 192.11, Prob > F = 0.000

1c (FE) 4.257*** 19.050*** 1.633*** log RDREV(3) 0.158*** log PATW(1) 0.631***
[0.092] [2.285] [0.080] [0.059] [0.103]

R-sq: within = 0.480; between = 0.273; overall = 0.418 
F(4, 758) = 174.79, Prob > F = 0.000

     2 - Dep variable: log IDRISK;    Number of obs = 845, sectional dimension = 63 

2a (FE) 0.091*** -0.169 0.012** log RDREV(1) 0.019*** - -
[0.006] [0.151] [0.005] [0.004] [-]

R-sq: within = 0.045; between = 0.264; overall = 0.097 
F(3, 779) = 12.27, Prob > F = 0.000

2b (FE) 0.088*** -0.137 0.008 log RDREV(1) 0.019*** log PAT(1) 0.017**
[0.006] [0.151] [0.005] [0.004] [0.007]

R-sq: within = 0.051; between = 0.074; overall = 0.015 
F(4, 778) = 10.57, Prob > F = 0.000

2c (FE) 0.088*** -0.133 0.009 log RDREV(1) 0.019*** log PATW(1) 0.016***
[0.006] [0.152] [0.005] [0.004] [0.005]

R-sq: within = 0.052; between = 0.095; overall = 0.023 
F(4, 778) = 10.65, Prob > F = 0.000

      3 - Dep variable: log PE;    Number of obs = 573, sectional dimension = 47 

3 (FE) 2.889*** -3.404 0.398*** log IR(2) 1.278** - -
[0.114] [2.337] [0.058] [0.637] [-]

R-sq: within = 0.102; between = 0.204; overall = 0.186 
F(3, 1454) = 238.70, Prob > F = 0.000

     4 - Dep variable: log PE;    Number of obs = 593, sectional dimension = 48 

4a (RE) 3.051*** -4.193** 0.404*** log RDREV(3) 0.453** - -
[0.122] [1.766] [0.056] [0.217] [-]

R-sq: within = 0.087; between = 0.290; overall = 0.223 
Wald chi2 (3) = 70.07, Prob > chi2 = 0.000

4b (RE) 3.042*** -4.593*** 0.374*** log RDREV(3) 0.454** log PAT(2) 0.112
[0.123] [1.792] [0.060] [0.218] [0.081]

R-sq: within = 0.092; between = 0.286; overall = 0.219
Wald chi2 (4) = 71.71, Prob > chi2 = 0.000

4c (RE) 3.042*** -4.856*** 0.357*** log RDREV(3) 0.427*** log PATW(2) 0.186***
[0.123] [1.788] [0.059] [0.217] [0.071]

R-sq: within = 0.100; between = 0.286; overall = 0.220 
Wald chi2 (4) = 76.64, Prob > chi2 = 0.000

 

 

Table 5  Estimation results (biotech sample) 



Model (Spec) Const / [s.e.] Contr / [s.e.] Dummy 85 Regr.1 (lag) Est / [s.e] Regr.2 (lag) Est / [s.e]

     1 - Dep variable: log MKTVAL;    Number of obs = 728, sectional dimension = 71 

1a (FE) 3.490*** 13.048*** 0.988*** log RDREV(2) 0.277* - -
[0.187] [1.545] [0.184] [0.171] [-]

R-sq: within = 0.123; between = 0.371; overall = 0.347
F(3, 654) = 30.65, Prob > F = 0.000

1b (FE) 4.479*** 13.231*** 0.887*** log RDREV(2) 0.263 log PAT(2) 0.277***
[0.186] [1.537] [0.186] [0.176] [0.092]

R-sq: within = 0.135; between = 0.411; overall = 0.387
F(4, 653) = 25.54, Prob > F = 0.000

1c (FE) 3.501*** 13.570*** 0.870*** log RDREV(2) 0.258 log PATW(2) 0.278***
[0.0186] [1.542] [0.187] [0.176] [0.086]

R-sq: within = 0.137; between = 0.411; overall = 0.388
F(4, 653) = 25.93, Prob > F = 0.000

   2 - Dep variable: log IDRISK;    Number of obs = 636, sectional dimension = 71 

2a (POOL) 0.168*** -0.454* -0.012 log RDREV(2) 0.015 - -
[0.056] [0.262] [0.055] [0.051] [-]

Adj R-sq = 0.005
F(3, 632) = 1.08, Prob > F = 0.358

2b (POOL) 0.162*** -0.723** -0.017 log RDREV(2) 0.020 log PAT(1) 0.045**
[0.055] [0.290] [0.055] [0.051] [0.021]

Adj R-sq = 0.012
F(43, 632) = 1.94, Prob > F = 0.102

2c (POOL) 0.165*** -0.749*** -0.022 log RDREV(2) 0.020 log PATW(1) 0.054***
[0.055] [0.284] [0.055] [0.050] [0.020]

Adj R-sq = 0.016
F(4, 631) = 2.56, Prob > F = 0.037

      3 - Dep variable: log PE;    Number of obs = 161, sectional dimension = 30 

3 (FE) 4.678*** -6.958*** 0.353 log IR(0) 1.307 - -
[0.375] [2.850] [0.331] [1.241] [-]

R-sq: within = 0.077; between = 0.082; overall = 0.040
F(3, 128) = 3.55, Prob > F = 0.016

     4 - Dep variable: log PE;    Number of obs = 182, sectional dimension = 31 

4a (FE) 4.261*** -1.602 -0.358 log RDREV(3) 0.495*** - -
[0.373] [2.002] [0.339] [0.113] [-]

R-sq: within = 0.135; between = 0.001; overall = 0.017
F(3, 148) = 7.71, Prob > F = 0.000

4b (FE) 4.268*** -1.625 -0.352 log RDREV(3) 0.496*** log PAT(2) -0.018
[0.379] [2.021] [0.345] [0.113] [0.173]

R-sq: within = 0.135; between = 0.001; overall = 0.015
F(4, 147) = 5.75, Prob > F = 0.000

4c (FE) 4.259*** -1.585 -0.363 log RDREV(3) 0.495*** log PATW(2) 0.012
[0.375] [2.022] [0.349] [0.113] [0.164]

R-sq: within = 0.135; between = 0.001; overall = 0.017
F(4, 147) = 5.75, Prob > F = 0.000

 
  


