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Abstract. This paper provides a directed search model designed
to explain the residual part of wage variation left over after the
impact of education and other observable worker characteristics
has been removed. Workers have private information about their
characteristics at the time they apply for jobs. Firms can observe
these characteristics once workers apply, and hire the worker with
the characteristic that they like. The paper focuses on the case in
which firms aren’t able to condition their wage offers on these char-
acteristics. The paper shows how to extend directed search argu-
ments to deal with arbitrary distributions of worker and firm types.
The paper then illustrates how data on the relationship between
exit wage and unemployment duration can be used to identify the
unobserved distributions of worker and firm types. The model also
has testable predictions. For example, certain easily checked prop-
erties of the offer distribution of wages imply that workers who are
hired by the highest wage firms should also be the workers who
have the shortest unemployment duration. This is in strict con-
trast to the usual directed search story in which high wages are
always accompanied by higher probability of unemployment.

1. Introduction

One shortcoming of most directed search models compared to models
with purely random matching is the fact that they are based on strong
symmetry assumptions. Even papers that are explicitly designed to al-
low for differences among traders (for example Shimer (2005) and Shi
(2002)) restrict themselves to distributions of wages and types with fi-
nite support. At a minimum, this makes it difficult for them to match
with econometric data that tends to involve continuous distributions.
Furthermore, the empirical content of these models applies to the re-
lationship between observables. For example, workers with more edu-
cation will receive higher wages. Apart from differences in these ob-
servables, all traders are assumed to be the same, leaving the models
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mute about the large part of the variation in wages that is apparently
unrelated to observables.

The purpose of this paper is to provide an alternative version of
the directed search model that can be used to explain this residual
variation. In the model, this variation is due to unobservable worker
characteristics, and to the (equally unobservable) value of these char-
acteristics to firms. The empirical content of the model comes from the
relationship it establishes between the offer distribution of wages and
the relationship between wages at which workers leave unemployment
and their average search duration.1 Addison, Centeno, and Portugal
(2004) present evidence to suggest that exit wages and unemployment
duration are negatively correlated. In a more standard directed search
terminology, this means that employment probability seems to be pos-
itively correlated with wage. The evidence is not strong, but it is
striking that it provides no support at all for the classic prediction of
directed search - that workers who apply at high wage firms will have
a lower probability of employment.

It is shown in the model below that any systematic tendency in
this data is tied to the properties of the wage offer distribution. The
relationship between exit wage and unemployment duration is driven by
two considerations. The first is completely intuitive - higher wage firms
will tend to hire workers whose quality is higher, and these workers will
tend to be more likely to find jobs no matter where they apply. This is
confounded by the possibility that higher quality workers will tend to
apply where there are a lot of other high quality workers. This is where
the directed search model plays a role since it ties down the application
strategy for workers of different qualities. The characterization of the
equilibrium application strategy provided below makes it possible to
provide a readily checked property of the offer distribution that will
determine the relationship between exit wage and duration. Assuming
that the wage offer distribution is has the usual skewed (log normal)
shape, it will support an inverse relationship between exit wage and
duration provided the density doesn’t decline too rapidly to the right
of its peak.

A second phenomena that the model in this paper can be used to ad-
dress is duration dependence (Machin and Manning (1999) or Addison,
Centeno, and Portugal (2004)). Workers who have been unemployed
for a long time tend to wait longer for a job offer than workers who

1The model in the paper is static, so the actual relationship is between the
probability of employment and the wage at which a worker is hired. In the steady
state of such a model, the expected duration of unemployment is just the reciprocal
of the probability of employment.
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are newly unemployed. Directed search models typically assume that
all workers are the same or differ only in ways that are observable
to an outsider. Workers apply to high wage firms only because their
equilibrium mixed strategies require them to do so with some positive
probability. When workers’ application behavior is driven by an under-
lying characteristic, workers who adopt a risky application strategy in
one period will tend to persist in this behavior. Workers who have been
unemployed for a long time are more likely to be workers whose types
support a risky application strategy. Duration dependence is then sim-
ply a consequence of the workers underlying characteristic and does
not reflect any kind of discouragement effect. Again, the model below
captures this phenomenon in a simple way.

Finally, the model below illustrates how data on the wage distribu-
tion and the relationship between exit wage and unemployment dura-
tion can be used to attribute wage variation to either variation in the
unobservable characteristics of workers, or to variation in firms valua-
tion of these characteristics.

Most of the paper is concerned with the case where there is a contin-
uum of workers and firms. However, the basic logic of directed search
involves mixed application strategies where workers apply with higher
probability at higher wage firms. It isn’t at all clear what mixed ap-
plication strategies mean when there are a continuum of different firms
to choose from all offering different wages. To get some insight into
this process the paper starts with the analysis of the equilibrium of the
application sub-game that occurs after a finite number of firms have
posted their wages for a finite number of workers. By taking limits of
the equilibrium payoffs as the number of firms and workers grow large,
this approach defines payoffs in a continuum model in which workers
and firms best reply to a distribution of wage offers, and a reservation
wage application strategy for workers. The payoff functions defined
by these limits define a large game that captures the logic of directed
search when there is a continuum of different traders on each side of
the market. The construction of this large game is one of the central
contributions of the paper. The equilibrium arguments are based on
an adaptation of the argument in Peters and Severinov (1997), and
resemble the mixed equilibrium that were characterized in Shi (2002)
and Shimer (2005), albeit under much different assumptions. There
is a unique symmetric equilibrium in which workers randomize over
the wages at which they submit applications. In any finite directed
search game, this application strategy is conceptually straightforward,
but complex since it involves a potentially large number of different
application probabilities for each of the different wages being offered
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in equilibrium. The paper shows the sense in which this application
strategy converges to a simple reservation wage rule similar to the one
in Shimer (2005) as the number of traders becomes large.

One other paper that deals with a continuum of types is Lang and
Manove (2006). They describe an equilibrium with two workers and
two firms in which the workers’ types are drawn from a continuous
distribution as they are here. They show that firms offer the same
wage provided their output does not depend on the type of the worker
that they hire. They point out the distinction between this result and
the discrimination results when there are two types as in Lang, Manove,
and Dickens (1999).

The paper begins with a description of search equilibrium with a
finite number of firms and workers. This section is an attempt to
motivate the reservation wage strategy that workers use in the large
game. The paper then presents a basic set of limit theorems that
are used to define the payoff functions in the large search game. The
equilibrium in the large search game is characterized in Section 4, and
the relationship between wage offer distributions and search duration
is analyzed. The final section concludes. Detailed proofs of the limit
theorems are contained in an appendix.

2. Fundamentals

A labor market consists of M and N firms and workers respectively.
To begin, assume these sets are finite and consist of m firms and n
workers with n = τm. Each worker has a characteristic y contained
in a closed connected interval Y =

[

y, y
]

⊂ R
+. These characteristics

are observable to firms once workers apply, but initially, they are pri-
vate information. When M and N are finite, it will be assumed that
each worker’s characteristic is independently drawn from a distribution
F . The distribution F is assumed to be differentiable and monoton-
ically increasing and to satisfy the property that F ′(y)

1−F (y)
is uniformly

bounded.2 It is assumed impossible for firms to reward this character-
istic directly. A worker’s payoff is simply the wage he receives. Workers
are risk neutral.

Firms characteristics are drawn from a set X = [x, x]. The distribu-
tion of firms’ characteristics will be assumed to be given by a smooth
monotonically increasing function H . Each firm has a single job that

2One necessary condition for this to hold is that the density of F at the highest
wage in the support of the distribution must be zero. This rules out, for example,
a uniform distribution, or a distribution in which all workers have an identical
characteristic that is commonly know.
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it wants to fill. It chooses the wage that it wishes to pay the worker
who fills this job. Each firm’s wage is chosen from a compact interval
W ⊂ R

+. Payoffs for firms depend on the wage they offer and on the
characteristic of the worker they hire, and. of course, on their own
characteristic. The payoff for every firm is v : W × Y ×X → R. It is
assumed that v is jointly continuous, that the family v(·, y, ·) is an equi-
continuous family of functions from Y into R, and that the derivative
of v with respect to y is bounded for all w.

The Bayesian game that determines wages and matches starts with
firms simultaneously choosing their wages. After observing the wage
offers each worker applies to one and only one firm. Once applications
are made to the firms, each firm chooses to hire the worker who applies
to it who has the highest characteristic. Since all workers are in some
sense equally well qualified for the jobs that firms offer, we assume that
the firm does not have the option of refusing to hire once it observes
the characteristics of the workers who apply.

3. Equilibrium of the Worker Application Sub-game

It is the market with a continuum of workers and firms that is ulti-
mately of interest in this paper. However, it isn’t obvious how to model
payoffs in this continuum. Workers actions can’t naturally be modeled
as a distribution of actions, and it isn’t clear why the essential friction
in directed search doesn’t disappear in the continuum because of sim-
ple assortative matching. To clarify these things, this paper describes
payoffs in the continuum as limits of payoffs from sequences of large
finite matching markets. This section then digresses in order to study
the continuation equilibrium in a finite matching problem. This digres-
sion helps to explain the intuition for the limit game, which otherwise
might appear quite ad hoc. The main limit theorem is presented at the
beginning of Section 4, and summarizes the results of this section.

A strategy for worker i in the finite application sub-game is a func-
tion πi : WN × Y → Sm−1, where Sm−1 =

{

π ∈ R
m
+ :
∑m

i=1 πi = 1
}

.3

This section analyzes symmetric equilibria in which every worker uses
an application strategy that is a common function of his or her type.
The idea that is fundamental to directed search is that these applica-
tion strategies depend on the array of wages on offer. For the purposes
of characterizing the equilibrium in the application sub-game associ-
ated with a fixed set of wages, the notation that captures this will be

3We ignore the possibility that a worker might not apply to any firm since that
is a strictly dominated strategy given the assumptions about payoffs.
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suppressed and we write πj(y) to be the probability with which each
worker whose type is y applies to firm j.

Since firms always hire the worker with the highest type who applies,
worker i will match with firm j in equilibrium so long as every other
worker in the market either has a lower type than he does, or applies to
some other firm. So the probability that a worker is hired if he applies
to firm j is given by

[

1 −

∫ y

y

πj (y′) dF (y′)

]n−1

The payoff to the worker is equal to this probability multiplied by the
wage that the firm offers. It will simplify the argument in this section to
assume that wages are ordered in such a way that w1 6 w2 6 . . . 6 wm.

The unique (symmetric) equilibrium for the application sub-game is
given by the following Lemma.

Lemma 3.1. For any array of wages w1, . . . wm offered by firms for
which w1 > 0, there is an array {yK, . . . , ym} with K > 1 and a set
{πk

j }k>K;j>k of probabilities satisfying πk
j > 0 and

∑m

j=k π
k
j = 1 for each

k and such that the strategy

πj(y) =

{

πk
j if j > k; y ∈ [yk, yk+1)

0 otherwise

is almost everywhere a unique continuation equilibrium application strat-
egy. The probabilities πi

j satisfy

(1)

(

πi
j

πi
i

)n−1

=
wi

wj

for each j > i.
Furthermore, the numbers {yk} and {πk

j } depend continuously on the
wages offered by firms.

The proof is included in the appendix. The theorem is hard to state
because there are many different probabilities that have to be described.
However, the content of the theorem can be explained with the help of
Figure 1.

The lower line in the figure represents the set of possible types that
workers might have, from y to y. The upper line represents the array of
wages on offer. There are six firms in this example, each offers a distinct
wage. The theorem says that the set of types can be partitioned into
m−K + 1 different subsets. In the picture there are four such subsets
with cutoff points given by y4, . . . y6. The interpretation of the interval
is that workers whose types are in (yj, yj+1] all behave in the same way.
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Figure 1. Figure 1
w1 w2 w3 w4 w5 w6

y4 y5 y6 y

y1 = y2 = y3

y

They randomize their applications over firms whose wages are wj or
higher using exactly the same mixed strategy. The arrows in the figure
indicate the wages at which the corresponding worker type will apply.
Note that lower type workers apply with positive probability to more
firms. This is intuitive. The highest type workers expect to be hired
no matter where they apply, so they should restrict their applications
to the highest wage firms.

Observe that workers whose type is in the interval (yj, yj+1] don’t
apply to firms whose wage is below wj. They apply to all firms offer-
ing wages higher than wj with strictly positive probability. Following
Shimer (2005) we refer to wj as worker j’s reservation wage. Then we
say that the worker applies to every wage above his reservation wage
with strictly positive probability. Observe that by (1), each worker
applies with the highest probability to the firm that offers his or her
reservation wage. The larger the wage is relative to the worker’s reser-
vation wage, the lower the probability with which the worker applies.
This is quite different from standard directed search. The tradeoff that
workers face in this model is that they face stiffer competition at higher
wage firms, instead of simply more of it. The equation (1) also indi-
cates that this effect is smaller the more workers there are. As the limit
theorem below argues, probabilities won’t vary across firms in the limit
and workers will apply with equal probability at every wage above their
reservation wage.

In the Figure, wages w1 and w2 are low enough that they are below
the reservation wage of every worker type so that they don’t receive
applications. All workers receive a higher expected payoff by applying
at wage w3 and taking a chance at being hired, that they get from
applying at wage w1 or w2 and being hired for sure. Normally one
would expect all wages that are offered to receive applications from
some worker types. In this case, the partition of worker types would be
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characterized by an m− 1 tuple (y2, . . . , ym). To simplify the notation
in what follows we restrict attention to this case. The type y2 will play
an important role in what follows. This worker type will be hired for
sure if she applies at the lowest wage w1 because higher type workers
won’t apply at this wage. On the other hand workers whose types are
below y2 will face competition at the wage w1.

Finally, it is worthwhile to give some intuition about why the equi-
librium works out the way it does. For example, an alternative that
might seem reasonable is that workers and firms match assortatively
with the highest quality workers applying to the highest wage firms,
with lower quality workers applying exclusively at lower wages. To see
why this won’t work, consider the lowest worker type yj who applies
at wage wj. If workers application strategies involve sorting, worker
yj will be hired for sure if he applies at any wage below wj and will
be hired at the wage wj if no higher type workers apply. Any worker
who has type yk < yj is less likely than worker yj to be hired at a firm
offering a wage w′ < wj , but has exactly the same chance as worker
yj of being hired at wage wj. So workers with types below yj would
strictly prefer to apply at wage wj than at any lower wage. To prevent
this, there must be some chance that workers with types below yj also
apply at wage wj in equilibrium.

All the outcomes depend on the number of workers and firms. To
avoid adding notation, everything is indexed by n and recall that the
ratio of the number of workers to firms is constant and equal to τ .
Fix an array of wages. Let {π1(·), . . . , πm(·)} be the continuation equi-
librium associated with this array of wages. Observe that by Lemma
3.1, each function πj(y) is a step function with jumps at the points yj.
Define the function

ωn(y) = min {wj : πj(y) > 0}

The function ωn (y) gives the reservation wage of a worker of type y.
This function is a step function whose ’steps’ occur at the critical points
yj identified by Lemma 3.1. The limit from the left of ωn(yj) at yj is
wj−1, while the right limit of ωn(yj) = wj. Denote its ’inverse’ function
by

y∗n(w) = sup {y′ : ωn(y
′) ≤ w}

In words, the inverse function gives the highest type who chooses a firm
offering wage w with strictly positive probability. Despite the fact that
the notation suppresses this, bear in mind that the functions y∗n and
ωn both depend on the array of wages on offer.
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3.1. Wages. Consider the firm who offers the wage wj (i.e., the jth

lowest wage). The probability with which a worker drawn randomly
both comes to firm j and has a type at least y is

∫ y∗

n(wj)

y

πj(y
′)dF (y′)

Let j̃(y) = {j′ : ωn(y) = wj′} be the index of the lowest wage to which
a worker of type y applies. Using this the integral above can be written

j
∑

j′=j̃(y)

πj′

j [F (yj′+1) − max [F (yj′), F (y)]]

if ωn(y) ≤ wj . The integral is zero otherwise. Then from firm j’s point
of view, it looks exactly as if n worker types are being independently
drawn from the probability distribution

φj(y) ≡ 1 − π
j̃(y)
j [F (yj̃(y)+1) − F (y)] −

j
∑

j′=j̃(y)+1

πj′

j [F (yj′+1) − F (yj′)]

The distribution function φj(y) has an atom of size

1 −

j
∑

j′=1

πj′

j [F (yj′+1) − F (yj′)]

at y.
The firm will always hires the worker who has the highest type. The

probability distribution for the type hired by the firm is then the prob-
ability distribution of the highest order statistic from this distribution.
This gives the expected payoff for firm j as

(2)

∫ y

y

v(wj, y, xj)dφ
n
j (y)

By Lemma 3.1, the distribution function φn(y) is continuous at each
point y in firm j’s wage. So φn(·) varies continuously in the weak
topology with firm j’s wage. As the family of functions v(·, y, xj) is
equi-continuous, the integral is a continuous function of the wage wj

that the firm offers. The existence of a mixed strategy equilibrium in
firms’ wages then follows from standard theorems.

4. The Limit Values of Payoffs

Despite the conceptual simplicity of firms’ payoff implied by (2), it
is difficult to provide much in the way of characterization of the Nash
equilibrium of the firms’ part of the game. It is tempting to jump to a
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continuum of workers and firms to see if this helps the characterization.
A significant complication in this regard arises from the fact that in a
large game, payoffs should be defined for every feasible action against
every possible distribution of the actions of the others. For firms this is
at least conceptually straightforward since wage distributions are well
understood. For workers, the application ’strategy’ is not a well defined
object in the continuum. The distribution of such things is then a moot
point.

To get around this difficulty, this section provides a theorem that
shows that limit payoffs of all traders depend on their own actions, on
the distribution of wages, and on a single reservation wage function for
workers. This result suggests a natural definition of equilibrium for the
continuum game.

Let G be a distribution of wages. To approximate the distribution
of wages, let Gn be a sequence of step functions that converges weakly
to G. Let {wn

1 , . . . , w
n
m} be the finite array of wages whose distribution

is Gn. We will use the convention that wn
1 = w0in each approximation,

where w0 is the lowest wage in the support of G. To define payoffs in
the limit game, Gn has to be arbitrary in the sense that payoffs in the
large game must be defined off the equilibrium path in order to show
what the equilibrium is.

Now fix a firm type x and a wage w to be offered by that firm.
Suppose that in this approximation, firm x has the jnth

highest wage.
For any distribution function, Gn, let G−

n (w) be the left limit of Gn, so
that (1 −G−

n (w))m is the number of firms whose wage offer is at least
w. Recall that the non-decreasing function ωn : Y →W represents the
lowest wage at which worker of type y will apply, and that yn(w) =
supy ωn(y) ≤ w is the highest worker type who will apply to a firm who
offers wage w.

Theorem 4.1. Let G be a distribution of wages, w an arbitrary wage
offered by a firm of type x, and w−, the largest wage in the support of
G that is less than or equal to w. Let Gn be a sequence of distributions
that converges weakly to G. Let jn be the corresponding sequence of
indices of firm x’s wage (i.e., such that w is the jth

n lowest wage in
the distribution associated with Gn). There is a non-decreasing right
continuous function ω(y) and a non-decreasing right continuous func-
tion y∗(w) (both of which depend on G) such that for almost every
y ∈

[

y, y
]

,

(3) lim
n→∞

[

1 −

∫ y∗

n(w)

y

πn
jn

(y)dF (y)

]n−1

=
w−

w
e−

R y∗(w−)
y

k(y′)dF (y′)
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and

lim
n→∞

∫ y

y

v(w, y, x)dφn
jn

(y) =

(4)

w−

w

∫ y∗(w−)

y

k(y)v(w, y, x)e−
R y∗(w−)
y

k(y′)dF (y′)F ′(y)dy+v(w, y∗(w−), x)

(

1 −
w−

w

)

whenever w ≥ w0, and

lim
n→∞

[

1 −

∫ y∗

n(w)

y

πn
jn

(y)dF (y)

]n−1

= min
[

1,
w0

w
e−

R y∗(w0)
y

τdF (y′)
]

and

lim
n→∞

∫ y

y

v(w, y, x)dφn
jn

(y) =

∫ y(w)

y

τv(w, y, x)
w0

w
e−

R y∗(w0)
y

τdF (y′)F ′(y)dy

otherwise. In these expressions, y (w)is the solution to

w0

w
e−

R y∗(w0)
y

τdF (y′) = 1

and
k(y) =

τ

1 −G−(ω(y))

Furthermore y∗(w) = sup {y : ω(y) ≤ w}.

The proof of the theorem is, again, included in the appendix. A
number of more descriptive comments are in order here.

First, the formulas above differ depending on whether the wage offer
a firm makes, or the wage at which a worker applies, is in the support
of the existing distribution G of wages. This makes the statement of
the Theorem complicated. When the wage is inside the support, the
payoffs are actually fairly simple. The probability with which a worker
is hired when he or she applies to a firm offering wage w is then given
by the formula

e−
R y∗(w)
y

k(y′)dF (y′)

while the profit for the firm who offers a wage in the support of G is
∫ y∗(w)

y

k(y)v(w, y, x)e−
R y∗(w)
y

k(y′)dF (y′)F ′(y)dy

At first glance, these formulas seem independent of the distribution
G. Recall however, that k(y) = τ

1−G−(ω(y))
. The function ω(y) is the
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common reservation wage function used by all workers, and y∗(w) is
it’s ’inverse’. So all traders’ payoffs are determined by their own ac-
tions (offer or apply at wage w), the distribution of wages G and the
reservation wage function ω.

The exponential function is a familiar one in directed search. To get
some idea how it works, suppose that all firms offer the same wage w.
Then the reservation wage of every type is w and 1−G− (w) = 1 (recall
that the left limit G− (w) can be interpreted as the proportion of firms
who have wages below w). So the probability that a worker of type y
trades with a firm offering w is e−τ(1−F (y)). The power in the exponent
is the ratio of the number of workers whose type is as large as y to the
number of firms.4

Payoffs associated with deviations outside the support of the distri-
bution will determine the location of the distribution. We discuss this
in more detail below. However, one result that deserves some comment
is that the theorem provides payoffs for almost all types. If there is
a deviation above the support of G, the theorem doesn’t provide the
right payoff for the highest type since he or she must be hired for sure
no matter where they apply. In the computation of the firms’ payoff
what happens to this type doesn’t make any difference since no worker
has this type with positive probability. The formula applies to every
other worker type, no matter how close it is to y.

To get some sense of how this works, let w be the deviation that lies
strictly above the support of G. Workers of type y < y must still have
reservation wage w−. The reason for this is that if there were some
interval of types who apply to the deviator with probability 1, the the
lowest type in the interval would necessarily trade with the deviator
with probability zero once the number of workers was large enough.
The probability with which such a worker trades when she applies at

wage w− is e−
R y

y
k(y′)dF (y′). Since the expected payoff the worker gets

by applying to the deviator must be the same as it is when she applies
at wage w−, and this gives the formula in the theorem.

The theorem defines payoffs for all possible wage offers and appli-
cation decisions that depend, apart from exogenous stuff, on the dis-
tribution of wages G, and a single reservation wage rule ω(y). These
formulas provide a natural definition of equilibrium in the large game.

4The usual formula for the trading probability differs from this because a worker
is hired in the standard model if he is lucky enough to be drawn from the pool of
workers who apply. Here the worker is hired if he is the highest quality worker who
applies.
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First, if every firm chooses a wage that is a best reply to the distri-
bution G and the function ω according to the limiting payoff function
given in the theorem, then the associated distribution of best replies
should be equal to G. Secondly, each worker type should find that his
or her expected payoff (again, according to the limiting payoff function
given in the theorem) is the same when they apply to any wage at or
above their reservation wage ω(y), and this payoff should be at least
as large as it is when they apply at any wage below their reservation
wage.

This is the notion of equilibrium that is adopted in the rest of the pa-
per. Before proceeding, it is useful to clarify somewhat the relationship
between this approach and the right approach, which is to compute the
limits of sub-game perfect Nash equilibria as the number of workers and
firms grow. A brief digression on this follows.

Let H be a distribution of firms’ types and Hnthe distribution of
firms’ types in a finite approximation consisting of n workers and m
firms, where n

m
= τ . Imagine constructing the sequence of approxi-

mations so that Hn converges weakly to H . Since firms’ first stage
payoff functions are continuous when there are finitely many workers
and firms according to Lemma 3.1, an equilibrium for the entire game
must exist in which firms use mixed strategies to set their wages in
the first stage. Suppose that Gn is a sequence of realizations of wages
that occur in the finite game with n workers when the m firms all use
their equilibrium mixed strategies. These random sequences converge
almost surely to some distribution function G as n becomes large.5

Then the formulas in Theorem 4.1 give the limit values of payoffs to
workers of each type facing the Bayesian equilibrium limit distribution
G of wages. The Theorem also provides the limit value of the payoff for
any wage w played against the equilibrium wages of all the other firms.
If G is not an equilibrium distribution in the limit game (in the sense
described above, that G is a best reply to itself), then some type of
firm does strictly better in the limit game than he could do by playing
the limit of his equilibrium pure strategy. Convergence means that he
would do strictly better in the finite approximations as well when n is
large enough.6 So the weak (or probability) limits of equilibrium wage
distributions from large finite games must be equilibrium distributions
in the limit game. This is the sense in which we can use the payoff

5In this sentence, convergence means uniform convergence and the target distri-
bution is just an unweighted average of the mixed strategies used by all the firms.
See Shorak and Wellner (1986).

6This statement would be modified to read that he would do strictly better with
high probability if equilibria with finite players involved mixed strategies.
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functions from the limit game to approximate what happens in large
finite approximations.

The converse isn’t necessarily true. As is usually the case, large
games may have more equilibria than their finite counterparts. How-
ever, this isn’t much of a problem as the methodology will identify the
limits of equilibria of large finite games. Furthermore, though there
might be more than one equilibrium in the large game, the number of
equilibria is ’small’.

5. Properties of Equilibrium

We now proceed to describe equilibrium and to show how it can
be characterized for the general case. We follow with a discussion of
equilibrium when firms are the same and add an example to verify
conditions from the general case. The definition that follows states the
equilibrium conditions that follow from Lemma 4.1. Let ρ (w, x,G, ω)be
the profit function described by the Lemma. In other words

w−

w

∫ y∗(w−)

y

k(y)v(w, y, x)e−
R y∗(w−)
y

k(y′)dF (y′)F ′(y)dy+v(w, y∗(w−), x)

(

1 −
w−

w

)

if w ≥ w0 (where w0 is the lowest wage in the support of G) and
∫ y(w)

y

τv(w, y, x)
w0

w
e−

R y∗(w0)
y

τdF (y′)F ′(y)dy

otherwise, where y (w) satisfies w0

w
e−

R y∗(w0)
y

τdF (y′) = 1.

Definition 5.1. An equilibrium for the large directed search game is
a wage offer distribution G and a reservation wage rule ω satisfying

(1) for every y, worker y’s payoff we−
R y∗(w)
y

k(y′)dF (y′) is constant for
every wage w exceeding his or her reservation wage ω (y);

(2) for every w the measure of the set
{

x : arg max
w′

(ρ (w′, x, G, ω)) ≤ w
}

is equal to G (w).

Though the limit theorem defines payoffs for all distributions, including
degenerate distributions where all firms offer the same wage, it is of
some interest to analyze equilibria in which the distribution of wages is
differentiable. Indeed, it is exactly this situation that the limit theorem
is designed to address.
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We begin with a restriction on the reservation wage rule. Observe
that

(5) we−
R y∗(w)
y

k(y′)dF (y′) = constant

for each w ≥ ω(y). For each worker type y, the derivative of this
expression with respect to w should then be zero at every wage above
ω (y). That is

we−
R y∗(w)
y

k(y′)dF (y′)k(y∗(w))F ′(y∗(w))
dy∗(w)

dw
= e−

R y∗(w)
y

k(y′)dF (y′)

giving

(6) w
τ

1 −G(w)
F ′(y∗(w)) =

1

dy∗(w)/dw

Since y∗(w) is the inverse function of ω(y) at each point in the support
of G,

(7) ω(y)
τ

1−G(ω(y))
F ′(y) =

dω(y)

dy

This system involves two unknown functions G and ω. If w0 is the
lowest wage in the support of G, let y0 be the highest type for which
ω (y) = w0.

7 Then (7) must hold on the interval [y0, y] with ω (y0) = w0

and ω (y) equal to the highest wage in the support of G.
When ω is strictly increasing (as it must be to satisfy 7) then a worker

of type y who applies to a firm offering his reservation wage ω(y) will
be offered a job with probability 1. The reason is that no worker with a
higher type would actually apply at the wage ω (y). So the constant on
the right hand side of (5) is equal to ω(y). The function ω (y) doubles
as the market payoff function for every worker type above y0.

It is convenient to extend the market payoff function to all types by
observing that since workers are always indifferent about firms whose
wage is above their reservation wage, and since workers whose types are
in the interval

[

y, y0

]

all have reservation wage equal to w0, the market
payoff for these lower types is their expected payoff when they apply
to the lowest wage w0. Overloading notation slightly, we will define

(8) ω (y) = w0e
−

R y∗(w0)
y

τdF (y′)

for worker types below y0.

7In the finite version of the model, the lowest wage was w1 and the highest type
who had w1 as a reservation wage was called y2. Hopefully this change in notation
will make the argument in the continuum more transparent.
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This makes it possible to simplify the firms’ profit function. Using
this extended market payoff function, for any wage above worker y’s
reservation wage,

(9) we−
R y∗(w)
y

k(y′)dF (y′) = ω(y).

Substituting this for the trading probability in the firms profit function
when it sets wage w ≥ ω (y0) gives

∫ y∗(w)

y

k(y)v(w, y, x)
ω (y)

w
F ′(y)dy

Now since (7) holds for every wage above ω (y0), and (8) holds at ω (y)
when y < y0, the firms’ profit has the following simpler form8

∫ y∗(w)

y

v(w, y, x)
ω′ (y)

w
dy

In fact, instead of thinking of the firm as choosing a wage w then
receiving applications from all workers whose types are less than y∗ (w),
it is more convenient to think about the firm choosing the highest
worker type it wants to attract, then setting its wage equal to this
worker type’s reservation wage. This makes the firms profit

(10)

∫ y

y

v(ω (y) , y′, x)
ω′ (y′)

ω (y)
dy′

Maximizing (10) with respect to y gives the first order condition

v [ω (y) , y, x] = −

∫ y

y

[

vw (ω (y) , y′, x) −
v (ω (y) , y′, x)

ω (y)

]

ω′ (y′) dy′

The term on the left represents the gain to the firm when it chooses to
raise the quality of its best applicant. The term on the right measures
the cost to the firm of paying the reservation wage of this higher quality
applicant to all the other types of workers who it attracts.

To continue with the analysis, one other concept is needed. A worker
of type y applies with equal probability at all firms whose wage is above
ω (y). Nonetheless, the firm who offers the wage ω (y) is focal for the
worker. So define a ’matching function’ h : Y → X which describes
for each worker characteristic, the characteristic of the firm who offers
that worker type his or her market payoff. The wage distribution can
be reconstructed using ω (y) and h (y) since G (ω (y)) = H (h (y)).

8When y < y0 this formula comes from taking the derivative of (8) with respect
to y and substituting using the fact that k (y) = τ when y < y0.
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An equilibrium will consist of a pair of non-decreasing functions ω (y)
and h (y) and an interval [y0, y] such that h (y0) = x, h (y) = x, the
functional equations

ω (y) = ω (y0) e
−τ [F (y0)−F (y)]

for each y < y0;

(11) ω(y)
τ

1−H(h(y))
F ′(y) = ω′ (y)

for each y ≥ y0;
(12)

v [ω (y) , y, h (y)] = −

∫ y

y

[

vw (ω (y) , y′, h (y)) −
v (ω (y) , y′, h (y))

ω (y)

]

ω′ (y′) dy′

for each y0 ≤ y ≤ y; and
∫ y

y

v (ω (y) , y′, x)

ω (y)
ω′ (y′) dy′ ≤

∫ y0

y

v (ω (y0) , y
′, x)

ω (y0)
ω′ (y′) dy′

for each y < y0 and x ∈ X.
The equilibrium conditions described above don’t impose any restric-

tion on wage offers above ω (y). To see why, observe that a firm who
offers a wage above ω (y) receives payoff

ω (y)

w

∫ y

y

v(w, y, x)
ω′ (y)

ω (y)
dy + v(w, y, x)

(

1 −
ω (y)

w

)

=

∫ y

y

v(w, y, x)
ω′ (y)

w
dy + v(w, y, x)

(

1 −
ω (y)

w

)

.

From this expression, it should be apparent that the derivative of this
expression with respect to w will be zero exactly when (12) holds at
the point y. So (12) already guarantees that deviations above the
support of the existing distribution won’t be profitable (at least local
deviations won’t be profitable - global conditions require restrictions
on v as always).

5.1. Identical Firms. The functional equations (11) and (12) are
amenable to numerical solution. To get more insight into the way
the equations resolve, it helps to think about the case where all firms
are the same. We illustrate how to characterize equilibria with wage
distributions here.

When firms are the same, the constant profit condition reduces to

(13) v [ω (y) , y] = −

∫ y

y

[

vw (ω (y) , y′) −
v (ω (y) , y′)

ω (y)

]

ω′ (y′) dy′
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Since this condition must hold for every y ≥ y0, it must hold at y0.
Since the payoff function ω (·) below y0 is defined by the wage ω (y0),
any candidate solution for ω must have initial value (y0, w0) satisfying
(14)

v [w0, y0] = −

∫ y0

y

[

vw (w0, y
′) −

v (w0, y
′)

w0

]

τw0e
−τ [F (y0)−F (y′)]F ′ (y′) dy′.

This condition ensures that firms cannot increase profits by offering a
wage slightly below the distribution G.9

On the interval [y0, y], the function ω (·) must be chosen to satisfy
(13). If this solution has the property that ω′ (y) > 0, then we can
proceed to try to define the wage distribution. In order for this curve
to represent the payoff to workers of different types, the distribution of
wages G must be adjusted so that

(15) ω(y)
τ

1−G (ω (y))
F ′(y) = ω′ (y)

is satisfied for each y ≥ y0 . Using the fact that the solution to (15)
derived above is monotonic, the distribution is given by

(16) G (w) = 1 −
wτF ′ (ω−1 (w))

ω′ (ω−1 (w))
.

Among the collections of solutions to (13), some subset will satisfy the
property that the solution to (16) is non-decreasing in w. Finally from
this subset, we need to choose one that has slope w0τF

′ (y0) at its
starting point (so that it extends the market payoff function below y0).

The Figures below illustrate how to construct an equilibrium distri-
bution. To begin we find the family of solutions to (13). These are
the dashed lines in Figure 2. These are all market payoffs function
ω that hold firms profits constant no matter which wage they offer.
These market payoff functions have to coincide with the market pay-
off functions that are defined for types below y0. In particular, they
have to have the same slope at the bottom of the equilibrium distri-
bution (y0, w0). On each of the solution curves ω in this figure, we
locate a point on the curve such that wτF ′ (y) = ω′ (y), and collect all
these point together to form the curve TT in that Figure. Wherever
the equilibrium distribution starts, it must be somewhere on this locus
TT .

Now we use the idea that the bottom point of the equilibrium dis-
tribution (y0, w0) fully determines the profit function for a firm who

9Restrictions on F and v will be needed to ensure that local optimality conditions
are global. For this general case, we ignore these. They are verified in the example
below.
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T

T

y y y

w

Figure 2. Constant Profit Condition within the Support

decides to offer a wage below the support of the distribution. This sim-
ply means finding the locus of all pairs (y, w) such that the first order
condition that guarantees that these downward wage cuts are locally
unprofitable. We collect all these points together into the locus SS in
Figure 3. Formally, SS is the collection of all solutions to (14). From
each point on this locus, there is a downward sloping market payoff
function for types below the corresponding y0. These payoff functions
are given by the dashed lines in the figure.

The only point that qualifies as a starting point for the distributionG
is the point given by the intersection of SS and TT . This intersection
point determines a payoff function for worker types below y0 and a
reservation wage rule from the collection of solutions to (13). In Figure
4 we put the two previous curves together to get a candidate solution.

Finally, we use (16) to generate the distribution of wages. At this
point there are a number of things that need to be checked. For in-
stance, it isn’t immediate that the curves have the shapes shown in
the picture, that the G just calculated is increasing, or that the ap-
propriate second order conditions hold at the edges of the distribution.
In the appendix, these details are checked for an example in which
v (w, y) = y − w and F (y) = y (2 − y). There is nothing innately in-
teresting about these details, so we do not discuss them here. Instead,
the discussion takes the properties of the Figures for granted.
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Figure 3. First Order Condition at the Bottom

S

S

T

T

y y y

w

ω(y)

ω(y)

Figure 4. The Equilibrium Distribution

It should be emphasized that properties of the equilibrium distribu-
tion depend on assumptions about v and F . An equilibrium distribu-
tion may not exist. The example in the appendix makes it straight-
forward to verify that if the distribution F is uniform, every solution
to (16) will be decreasing. What that means is that a non-degenerate
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distribution of wages can’t be supported with a uniform distribution.
Similarly, if v does not depend on y10, it is impossible to support an
equilibrium distribution. The example in the appendix uses a distribu-
tion with a linear density. If there is no equilibrium distribution, there
will still be an equilibrium in which all firms offer the same wage. The
equilibrium wage is given at the point where the set SS of solutions
to (14) intersects the vertical line through y. This follows from the
arguments above since every point on this locus makes downward de-
viations unprofitable. That upward deviations are unprofitable follows
from differentiability of profits. The possible non-existence of an equi-
librium distribution is not an issue here, since the primary motivation
for this model is to deal with the case where firms differ.

The differences between the dispersed wage equilibrium and the sin-
gle wage equilibrium deserve some comment. Keep in mind that the
properties described in the picture follow under ’reasonable’ assump-
tions as the appendix shows.11 All workers earn higher wages in the
single wage equilibrium than they do in the dispersed wage equilibrium.
This is intuitive since low wage firms don’t attract high type workers at
all. The dispersion then limits the number of firms competing for the
high type workers. This should bring down their wages. The distribu-
tional arguments illustrate how this effect propagates down to the lower
wage workers. This result is similar to the result in Lang, Manove, and
Dickens (1999) who show that discrimination against workers of a cer-
tain type drives down wages of a second type in a directed search model
assuming worker type has no direct effect on productivity.

In the symmetric firm case the dispersed wage equilibrium certainly
won’t be efficient. The concentration of applications of the higher type
workers with the high wage firms creates no sorting gain, but causes
more of the high type workers to be rationed. An allocation of work-
ers that maximizes expected output would spread out applications of
the high type workers over all firms in the fashion of the symmetric
equilibrium. This isn’t particularly interesting since there is no gain
to sorting workers when firms are identical. Even if there is, the equi-
librium won’t be efficient. To see why, contrast the results in Shimer
(2005) where the distribution of wages is efficient. There a low quality
worker who applies to a high quality firm has a limited benefit since
the firm can pay the low quality worker a lower wage than it does to

10An example like this was analyzed in a different way by Lang and Manove
(2006). They come to the same conclusion that a distribution of wages cannot be
supported if firm profits don’t depend on y.

11We have also verified these properties numerically with a linear profit function
assuming F is a β distribution.
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the high quality worker after it hires the worker. Here the low quality
workers earn just as much once hired as the high quality workers do.
So they have a much higher incentive here to apply to high wage firms.

Finally the analysis above is meant to illustrate how the equilibrium
wage distribution might be computed more generally. The model seems
most useful when firms differ. The loci TT and SS still define the start-
ing point for the equilibrium distribution, with both curves computed
using the profit function for the firm with the lowest type. All of the
reasoning given above applies to the lowest type firm in this case. Once
the lower bound of the distribution is determined in this way, the prob-
lem is to find a pair of functions (h, ω) that satisfy the two equations
(11) and (12) with starting values ω (y0) = w0 and h (y0) = x. Since
this seems to require numerical solution, we don’t pursue this her.

5.2. Offer Distributions and Duration. Practically, the distribu-
tions of firm and worker types will be unknown. Any distribution G
can be supported for an appropriate choice for the distribution of firm
types. The theory does impose a restriction on the relationship between
the wage distribution and unemployment duration. In particular, la-
bor force surveys provide information about the wages at which workers
leave unemployment, and the amount of time they spent searching for
a job. Averaging unemployment duration over all workers who exit
unemployment at different wages gives some information about this
relationship. Duration is just the inverse of the matching probability
which is the variable of interest in the theory described so far.

So for this section, fix a distribution of wages. Let wG be the maxi-
mum point in the support of the distribution of wages. The probability
that a worker of type y is hired by some firm, using the reasoning above,
is given by

Q(y) =

∫ wG

ω(y)

e−
R y∗(w)
y

k(y′)dF (y′) G′(w)

1 −G(ω(y))
dw

Since the expected wage is constant for a worker of type y at every
wage above ω(y), this can be written as

Q(y) =

∫ wG

ω(y)

ω(y)

w

G′(w)

1 −G(ω(y))
dw

The expected duration of unemployment for a worker of type y is
1

Q(y)
. Of concern below is how this matching probability varies with

the worker’s type.
The complication in all this is that higher types have higher reserva-

tion wages. So despite the fact that they are more likely to be hired at
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any particular firm than low type workers, they tend to apply at firms
where there is a lot of high type competition. So whether or not this
probability is increasing in type depends on the function

ψ(w) =

∫ wG

w

w

w′

G′(w′)

1 −G(w)
dw′

depends on the wage w. This function represents the expectation of
the ratio of any wage to the harmonic mean of higher wages in the
distribution G. This function isn’t particularly simple conceptually.
Nor is it easy to deduce distributions for the unobservables that will
support this property. However it is readily checked numerically.

For example, we have done a number of numeric simulations when F
is given by different β distributions and firms are symmetric. In each
case the simulated function ψ (w) is monotonically increasing. Since
this applies to the less interesting case where firms are symmetric, we
leave out details. Another approach is simply to ask whether the data
appears to support the presumption that ψ is increasing. For this case,
we have estimated ψ using data from the 2000 US census controlling
for various levels of education. Whether the estimation procedure is
parametric or not, the function ψ appears to be increasing. I can’t
claim enough econometric skill to pretend that these estimates would
stand up to any kind of scrutiny, so details aren’t included. They do
seem to indicate that it is reasonable to consider the case where ψ is
increasing, so that is the focus of the rest of this section.

If ψ′(w) > 0, for example, then the ex ante probability with which
a worker of type y trades is an increasing function of y because of the
monotonicity of ω(y).

Again, y is unobservable. What is observable is the actual duration
of workers hired at different wages. From (4), the probability that a
worker hired by the firm who offers wage w has a type less than or
equal to y0 is given by

∫ y0

y
k(y)e−

R y∗(w)
y

k(y′)dF (y′)F ′(y)dy

∫ y∗(w)

y
k(y)e−

R y∗(w)
y

k(y′)dF (y′)F ′(y)dy
=

∫ y0

y
τ

1−G(ω(y))
ω(y)
w
F ′(y)dy

∫ y∗(w)

y
τ

1−G(ω(y))
ω(y)
w
F ′(y)dy

Note that this probability is conditional on some worker being hired
by the firm, which explains the denominator. The equality follows by
substituting for k(y) and using (9). Substituting (7) gives an even
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simpler formulation

(17)

∫ y0

y
ω′(y)dy

w − ω(y)

This expression is readily seen to be declining in w. The interpretation
is that an increase in the wage moves the distribution function for the
type hired by the firm to one that first order stochastically dominates
the original distribution.

Now use this distribution to take expectations of Q(y) to get the
following:

Proposition 5.2. If ψ(w) is monotonically increasing then the ex-
pected duration of unemployment for a worker hired by a firm is an
decreasing function of the wage offered by the firm.

When ψ(w) is increasing, workers who are hired at high wage firms
will tend on average to have spent less time searching for jobs than
workers who are hired by low wage firms. This is quite unlike standard
directed search where high wages and long duration must go together.
This prediction is not a particularly strong test of the model, since
the function ψ(w) may not be monotonic. Notice however, that it is a
testable consequence of the model that does not rely on any knowledge
about the distributions of the unobservables.

The expected duration for a worker hired by a firm offering a wage
w is given by the reciprocal of

∫ y∗(w)

y

ω′(y)

w − ω(y)
ψ(ω(y))dy

using the expression for the density of the type of worker hired by the
firm that was derived above. It is apparent from this expression that
when ψ(w) is non-monotonic, then there will be no systematic relation-
ship between the wage at which a worker is hired and his probability of
matching measured as his expected duration. Even in this dimension,
the result is quite different from the standard directed search model
where wage and employment probability must be inversely related.

Let Φ(w) be the expected duration of unemployment for workers
hired at wage w, which could be estimated from existing data. This
function, along with the actual wage distribution constitute the ob-
servables in this problem. Fix a set of types, say [0, 1]. Using the last
expression, the functional equation

∫ y∗(w)

y

ω′(y)

w − ω(y)
ψ(ω(y))dy =

1

Φ(w)
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can be solved to recover the function ω(y). The distribution of worker
types is then recovered by solving (7). The distribution of firm types
must then be chosen to support the observed distribution G when firms
best reply to G and the symmetric strategy ω(·) used by workers. This
makes it possible to recover the productivity of the unobserved distri-
bution of types.

The point of this last argument is simply to show how the model can
be used to decompose the wage variation into variation in workers’ and
firms’ types. We leave the analysis of this for future work.

6. Conclusion

This paper illustrates how a directed search model can be used to
account for the residual part of wage variation. Part of this involves
adjusting the directed search model to allow for rich variation in the
types of workers and firms. This improves on existing models that use
extensive symmetry assumptions that force the models to behave in
counter-factual ways. In the variant proposed here, rich distributions
of firm and worker characteristics can be incorporated.

The directed search model does impose some structure on the data.
Surprisingly it restricts the relationship between the wage distribution
and the function relating unemployment duration and exit wage. Some
wage distributions (the uniform being an example) have the property
that workers who leave unemployment at high wages must also have
shorter unemployment duration. This prediction is distinctly different
from standard directed search models where unemployment duration
and wage must be positively related.

The driving force in the model presented here is the equilibrium of
the workers’ application sub-game. Contrary to what one might expect,
low quality workers do not restrict their applications to low wage firms.
On the contrary, low quality workers make applications at all kinds of
different wages. The higher the unobservable quality of the worker, the
more discriminating the worker is in the wages at which he applies.
It is this property that breaks the strong relationship between wage
and unemployment probability. Higher quality workers are more likely,
everything else constant, to be hired by firms. High quality workers also
apply to higher wage firms on average. In this sense high wages and
short duration should be related. This relationship is not unambiguous
however. As a workers quality rises, he is more likely to be hired at
any given firm, but he will also restrict his applications to firms whose
wages are higher. This by itself reduces the probability of employment
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because high wage firms have bigger queues - the usual directed search
story.

Finally, the paper illustrates how observable data on wages and du-
ration can be used to recover the unobserved distributions of firms’ and
workers’ types.

7. Appendix

7.1. Proof of Lemma 3.1.

Proof. The proof is inductive.
Evidently a worker with the highest type will be hired with probabil-

ity one where ever he applies, so every equilibrium strategy must have
the highest type worker apply to one of the firms who offer the highest
wage. If wm−1 = wm set ym = 1 and πm

m = 1. In this case observe that
a worker of type ym is just indifferent between applying to firm m and
m− 1.

Otherwise, fix an open interval (ym, y). The expected payoff to
worker i with a type in this interval who applies to firm m is

[

1 −

∫ y

y

πm (y′) dF (y′)

]n−1

wm

The expected payoff to applying to any firm j whose wage is wj < wm

is
[

1 −

∫ y

y

πj(y
′)dF (y′)

]n−1

wj

Now observe that for ym close enough to y, workers will strictly prefer
applying to firm m than applying to firm j, even if all the workers
whose types are higher apply to firm m with probability 1. In other
words, for workers whose type is close enough to y, applying to one
of the firms whose wage is highest strictly dominates any other choice.
Thus there is some interval near y such that workers whose types are
in this interval apply to firm m with probability 1 in every Bayesian
equilibrium. The lowest type for which this is true is the type ym such
that

[

1 −

∫ y

ym

dF (y′)

]n−1

wm = wm−1

or the type y that satisfies,

(18) [F (y)]n−1wm = wm−1

Then πi
m(y) = 1 ≡ πm

m for every i and for every y ∈ (ym, y]} must be
true in every Bayesian equilibrium of this sub-game.
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Note that ym is a continuous function of wm and wm−1 and that
ym → 1 as wm−1 → wm. Since πm

m is constant, it is trivially a continuous
function of wm and wm−1. Furthermore, note that a worker of type ym

gets the same payoff from every firm whose index is greater than or
equal to m− 1.

Now suppose that we have defined cutoff valuations {yk+1, . . . , ym}
and probabilities πk′

j′ for k′ = k + 1, . . .m and j′ > k′, satisfying
∑

j′>k′ πk′

j′ = 1 for each k′. Suppose that these satisfy the following
conditions:

• (C.1) - πj′(y) = πk′

j′ for each y ∈ (yk′, yk′+1) and πj′ = 0 other-
wise, in every symmetric Bayesian equilibrium;

• (C.2) - a worker of type yk′ where yk′ ∈ {yk+1, . . . , ym}, gets the
same payoff from every firm whose index is at least k′ − 1;

• (C.3) - each of these numbers is a continuous function of wages
wk, . . . wm.

If yk+1 = y, then we have shown that the Bayesian continuation equi-
librium for this sub-game is almost everywhere uniquely defined (the
exceptions are the cutoff values yk). So suppose yk+1 > y. We now
show that properties (C.1) to (C.3) can be extended to some interval
[yk, yk+1) which will be non-degenerate provided wk < wk−1.

If wk = wk+1, or wk−1 = wk, set yk = yk+1, π
k
k = 0 and πk

j = πk+1
j

for each j > k. It is straightforward that valuations {yk, . . . , ym} and
probabilities πk′

j′ for k′ = k, . . .m satisfy conditions (C.1) to (C.3) of
the induction hypothesis.

Otherwise either wk−1 < wk < wk+1 or k = 1. Each of these cases
can be analyzed the same way. In the former case, observe that in this
construction, worker types larger than yk+1 will never apply to firm k.
Thus for y close enough to yk+1 applying to any firm with wage rate
below wk will be strictly dominated by applying to firm k no matter
what workers with types in the interval (y, yk+1) choose to do. In the
case where k = 1 firm k is already the lowest wage firm. In either
case, we conclude that there is an interval of types (yk, yk+1), with yk

possibly equal to y, such that workers with types in this interval will
apply with positive probability only to firms with wages at least wk in
every Bayesian equilibrium.

By the induction hypothesis, a worker of type yk+1 will receive the
same payoff from each firm k + 1 through m. This payoff is given by

[

1 −

j
∑

i=1

πk+i
k+j [F (yk+i+1) − F (yk+i)]

]n−1

wk+j
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when this worker applies to firm k + j. By the induction hypothesis,
this payoff is equal to wk for each j > 1. Notice that this payoff is
independent of what workers whose types are in the interval (yk, yk+1)
choose to do. A worker i of type y ∈ (yk, yk+1) who applies to firm
k + j receives payoff
(19)
[

1 −

∫ yk+1

y

πk+j(y)dF (y)−

j
∑

i=1

πk+i
k+j[F (yk+i+1) − F (yk+i)]

]n−1

wk+j

while the same worker who applies to firm k gets

(20)

[

1 −

∫ yk+1

y

πk(y)dF (y)

]n−1

wk

The function described in (20) is non-decreasing in y and has a limit
from the left at yk+1 equal to wk. Since applying to firms whose
wages are lower than wk is a strictly dominated strategy of a worker
of type y close enough to yk+1, it must be the case that for every i,
∫ yk+1

y
πi

k+j(y)dy is strictly positive for some j. Then from (19) and

(20),
∫ yk+1

y
πk+j(y)dy must be strictly positive for all j.

The payoff must be the same at firm k and k+ j for each j > 0 and
for every y ∈ (yk, yk+1). This requires that (19) and (20) must be equal
identically in y. Differentiating this identity repeatedly gives

(21)

(

πk
k+j (y)

πk
k(y)

)n−1

=
wk

wk+j

implying that πk
k+j are constant.

They can all be determined from the condition

(22)
m−k
∑

j=0

πk
k+j = 1

Notice that by the induction hypothesis, the limits from the left of (19)
and (20) at yk+1 must both be equal to wk. Thus (21) and (22) are
also sufficient for identity of the payoffs.

Having found the value for πk
k we can determine the lower bound yk.

Since workers with higher types and higher investments only apply to
firms whose wages are at least wk, this worker is sure to be hired if he
applies to the k − 1st firm, assuming that there is one. On the other
hand, since he is lowest type who applies to the kth firm, he will be
hired by the kth firm only if no other worker with a higher type applies.
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Then define yk as follows: if k = 1, then yk = y1 = y; otherwise if

(23)
[

1 − πk
k (F (yk+1) − F (y))

]n−1
wk = wk−1

has a solution that exceeds y, set yk equal to this solution; otherwise
set yk = y.

This argument extends conditions (C.1) and (C.2) by construction.
Property (C.3) is readily verified using, for example, the maximum
theorem since wk+j > 0 by assumption. �

7.2. A preliminary Result.

Lemma 7.1. For any sequence Gn there is a sub-sequence such that
ωn(y) converges weakly to a right continuous non-decreasing function
ω(y). Along this sequence, define y∗n(w) = sup {y : ωn(y) ≤ w}. The
sequence y∗n(·) converges weakly to a right continuous non-decreasing
function y∗(·).

Proof. By construction each ωn(y) is right continuous and non-decreasing,

and for each n
∫ w

w
dωn(y) ≤ wG − wG where wG and wG are the maxi-

mum and minimum points in the support of G respectively. Hence by
Helly Compactness Theorem, ωn(y) has a subsequence that converges
weakly to an non-decreasing right continuous function. Let y∗n(·) be
the sequence associated with ωn (y). It is also non-decreasing and right
continuous, and so there is a subsequence such that it has a weak limit
y∗(·) by the same reasoning. Since ωn (y) converges weakly, it converges
weakly on any subsequence. So there is a sequence along which both
ωn and its inverse yn converge weakly. �

7.3. Proof of Lemma 7.3. Define ws as either the largest wage in the
support of G that is less than or equal to w, or if no such wage exists,
let ws be the smallest wage in the support of G that is at least as large
as w. For convenience, choose the approximations Gn in such a way
that the lowest wage w0 in each approximation is the lowest wage in
the support of G. Similarly, suppose that the highest wage wm in each
approximation is also the highest wage in the support of G.

Lemma 7.2. Let v(y) be any point-wise limit for the equilibrium payoff
to a worker of type y as n goes to infinity. Then v (y) > 0 for each
y ∈ Y .

Proof. Choose any wage w′ such thatG (w′) < 1. Since worker y attains
the same payoff no matter where he applies by Lemma 3.1, the limit
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of his equilibrium payoff is given by

lim
n→∞

(

1 −

∫ y∗

n(w′)

y

πn
jn(y′)dF (y′)

)n−1

w′ ≥

lim
n→∞

(

1 −

∫ y∗

n(w′)

y

πn
jn(y∗ (w′))dF (y′)

)n−1

w′ =

lim
n→∞

(

1 −

∫ y∗

n(w′)

y

πn
m(y∗ (w′))

(wm

w′

)
1

n−1
dF (y′)

)n−1

w′ ≥

lim
n→∞

(

1 −
1

(1 −G−
n (w′))m

(wm

w′

)
1

n−1
[F (y∗ (w′) − F (y))]

)n−1

w′ =

e
−

F (y∗(w′)−F (y))
1−G−(w′) w′ > 0

The first inequality follows from (21) and the fact that higher types
have higher reservation wages so that they allocate their application
probabilities over fewer firms. The second equality simply substitutes
using (21). The third inequality comes from the fact that the sum of the
application probabilities over all firms whose wage is w′ or higher must
be equal to one. The limit is a standard one in directed search. �

Lemma 7.3. Let jn be the index of w in the nth approximation to G.
Let ω(y) be a limit of the sequence ωn(y) as defined in Lemma 7.1. Then
for any y such that πn

jn > 0 for infinitely many n, limn→∞ πn
jn(y)(n−

1) = τ
1−G−(ω(y))

≡ k (y)

Proof. Let y < y. For any finite n, there is a firm m who offers the
highest wage in the support of the distribution Gn. Call this highest
wage wm. This highest wage is no higher than w.

We can use this to show that πn
j (y) (n− 1) is uniformly bounded. By

Lemma 3.1, every worker type y applies to the firm offering the highest
wage wm with strictly positive probability. From (19), the payoff to a
worker of type y who applies to firm m is bounded above by

(24) (1 − πn
m(y)(1− F (y)))n−1w

This is an upper bound for two reasons. Firm m will offer a wage that
is no higher than w, and workers whose types are higher than y will
apply to firm m with probability at least as high as a worker of type y.

We first show that πn
m(y)(n− 1) is uniformly (in y) bounded above

by an integrable function, then work down to show the result for firms
with indices lower than m. Let b (y) be a measurable function from Y
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into R and suppose that πn
m(y)(n− 1) has a limit b(y) or larger. Then

the upper bound given by (24) can be no larger than

lim
n→∞

(1 − (
b(y)

n− 1
)(F (y) − F (y)))n−1w

= exp

{

lim
n→∞

log
(

1 − 1
n−1

b(y)(1 − F (y))
)

1
n−1

}

w

= e−b(y)(F (y)−F (y))w

where the last result follows by L’Hopital’s rule. Since the upper bound
on the worker’s payoff must be at least v(y), then limn→∞ πn

m(y)(n−1)
must have an upper bound b(y) that satisfies e−b(y)(F (y)−F (y))w ≥ v(y),

for all y, or b(y)(F (y) − F (y)) ≤ − log
(

v(y)
w

)

. Now observe that

∫ y

y

b(y′)dF (y′) ≤

∫ y

y

b(y′)(1−F (y′))
F ′(y′)

1 − F (y′)
dy′ ≤ − log

(

v(y)

w

)

·B·(y−y)

where B is the uniform bound on the ratio F ′(y′)
1−F (y′)

. By Lemma 7.2,

log
(

v(y)
w

)

is bounded. Thus the bound b(y) is an F -integrable function

of y that uniformly bounds πn
m(y)(n− 1) for all n large enough. Define

k(y) = limn→∞ πn
m(y)(n− 1).

Now we extend this uniform upper bound to firms with indices below
m. From (21)

(25) πn
j (y)(n− 1) =

(wm

w

)
1

n−1
πn

m(y)(n− 1)

for each j such that πn
j (y) > 0. From the previous result, the right hand

side of this equation is uniformly bounded by the F -integrable function
wm

w
b(y), so the left hand side is also uniformly bounded. Furthermore,

taking limits in (25) with respect to n gives

lim
n→∞

πn
jn(y)(n− 1) = k(y)

Recall that ωn(y) is the lowest wage to which a worker of type y ap-
plies with positive probability in the continuation equilibrium with n
workers. From (25)

(26)
∑

j:wj≥ωn(y)

πn
j (y)(n− 1) = πn

m(y)(n− 1)
∑

j:wj≥ωn(y)

(

wm

wj

)
1

n−1

The sum on the left hand side of this last equation is n − 1 since the
application probabilities sum to one. On the right hand side, observe
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that

∑

j:wj≥ωn(y)

1 ≤
∑

j:wj≥ωn(y)

(

wm

wj

)
1

n−1

≤

(

wm

wj∗n

)
1

n−1 ∑

j:wj≥ωn(y)

1

Dividing this by m gives

(1−G−
n (ωn(y))) ≤

∑

j:wj≥ωn(y)

(

wm

wj

)
1

n−1

/m ≤

(

wm

wj∗n

)
1

n−1

(1−G−
n (ωn(y)))

This implies that

lim
n→∞

∑

j:wj≥ωn(y)

(

wm

wj

)
1

n−1

/m = 1 −G−(ω(y))

where ω(y). Then from (26)
(27)

lim
n→∞

πn
jn(y)(n− 1) = lim

n→∞

n− 1

1 −G−
n (ωn(y)) ·m

=
τ

1 −G−(ω(y))
= k(y)

which gives the result.
Recall the convention that each finite approximation to G assigns

the lowest wage w0 to be equal to the lowest wage in the support of
G. For any wage w ≥ w0, let w− be the highest wage in the support of
G that is less than or equal to w. Note that this means that w− = w
whenever w lies in the support of G. �

Lemma 7.4. Let jn be the index of w in the nth approximation to G.
Let ω(y) be a limit of the sequence ωn(y) as defined in Lemma 7.1.
Then

lim
n→∞

(

1 −

∫ y∗

n(w)

y

πn
jn(y′)dF (y′)

)n−1

=

w−

w
e
−

R y∗(w−)
y

τ

1−G−(ω(y′))
dF (y′)

when w ≥ w0 , and

min

[

1,
w0

w
e
−

R y∗(w0)
y

τ

1−G−(ω(y′))
dF (y′)

]

otherwise.

Proof. Suppose first that w ≥ w0. Then

lim
n→∞

(

1 −

∫ y∗

n(w)

y

πn
jn(y′)dF (y′)

)n−1

=
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(28)

lim
n→∞

(

1 −

∫ y∗

n(wjn
−1)

y

πn
jn(y′)dF (y′) −

∫ y∗

n(w)

y∗

n(wjn
−1)

πn
jn(y′)dF (y′)

)n−1

By the definition of y∗n(wjn−1), a worker of this type who applies to the
firm offering wage w will be hired with probability

(

1 −

∫ y∗

n(w)

y∗

n(wjn
−1)

πn
jn(y′)dF (y′)

)n−1

He will be hired for sure if he applies to the firm offering wjn−1. So
∫ y∗

n(w)

y∗

n(wjn
−1)

πn
jn(y′)dF (y′) = 1 −

(wjn−1

w

)
1

n−1

Substitute this into (28) above to get

lim
n→∞

(

(wjn−1

w

)
1

n−1
−

∫ y∗

n(wjn
−1)

y

πn
jn(y′)dF (y′)

)n−1

=

lim
n→∞

exp

{

(n− 1) log

(

(wjn−1

w

)
1

n−1
−

1

n− 1

∫ y∗

n(wjn
−1)

y

πn
jn(y′)(n− 1)dF (y′)

)}

Since the exponential function is continuous, the limit can moved inside
the first bracket. So we compute

(29) lim
n→∞

log
(

(wjn
−1

w

)
1

n−1 − 1
n−1

{

∫ y∗

n(wjn
−1)

y
πn

jn(y′)(n− 1)dF (y′)
})

1
n−1

which can be written as

lim
x→0,t→γ,z→ζ

log (tx − xz)

x

where γ = limn→∞
wjn

−1

w
is 1 if w is in the support of G, and is equal

to ws

w
otherwise. The value of the constant ζ follows from the bounded

convergence theorem and Lemma 7.3. ζ is equal to
∫ y∗(w)

y
k(y′)dF (y′)

when w is in the support of G and to
∫ y∗(ws)

y
k(y′)dF (y′) when w lies

above the support of G. Now apply L’Hopital’s rule to get the limit of
(29) as

w−

w
e−

R y∗(w−)
y

k(y′)dF (y′)

when w is above the support of G, and to e−
R y∗(w)

y
k(y′)dF (y′) when w is

in the support of G.
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When w < w0 , the argument is similar. The limit of interest is

lim
n→∞

(

1 −

∫ y∗

n(w)

y

πn
jn(y′)dF (y′)

)n−1

=

lim
n→∞

min



1,
w0

w

(

1 −

∫ y∗

n(w0)

y

πn
1 (y′)dF (y′)

)n−1


 =

min



1,
w0

w
lim

n→∞

(

1 −
1

n− 1

∫ y∗

n(w0)

y

(n− 1)πn
1 (y′)dF (y′)

)n−1




The equality follows from the fact that for any worker who applies at
both wages w and w0with positive probability,
(

1 −

∫ y∗

n(w)

y

πn
jn(y′)dF (y′)

)n−1

w =

(

1 −

∫ y∗

n(w0)

y

πn
1 (y′)dF (y′)

)n−1

w0

The min operator appears because types close to y∗n (w0) apply at wage
w with probability zero, so every such type would be hired with prob-
ability 1 if they did apply. Now evaluating the limit as above gives

min
[

1,
w0

w
e−

R y∗(w0)
y

k(y′)dF (y′)
]

�

7.4. Proof of Theorem 4.1.

Proof. The proof of Theorem 4.1 now follows from Lemmas 7.4 and
7.1. A firm of type x who offers wage w has profit

∫ y

y

v(w, y, x)dφn
jn

(y)

The argument now depends on whether w ≥ w1 (i.e., whether or not
there is a wage below w in the support of G). Suppose first that w ≥ w1

and let jn be the index of the wage w in the distribution Gn associated
with the nth approximation. Substituting for φ gives

∫ y∗

n(w)

y

v(w, y, x)d

[

1 −

∫ y∗

n(w)

y

πn
jn

(y′)dF (y′)

]n

=

∫ y∗

n(wjn
−1)

y

v(w, y, x)d

[

1 −

∫ y∗

n(w)

y

πn
jn

(y′)dF (y′)

]n

+
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∫ y∗

n(w)

y∗

n(wjn
−1)

v(w, y, x)d

[

1 −

∫ y∗

n(w)

y

πn
jn

(y′)dF (y′)

]n

=

∫ y∗

n(wjn
−1)

y

v(w, y, x)nπn
jn

(y)

[

1 −

∫ y∗

n(w)

y

πn
jn

(y′)dF (y′)

]n−1

F ′(y)dy+

v(w, y∗n(w), x) − v(w, y∗n(wjn−1), x)

[

1 −

∫ y∗

n(w)

y∗

n(wjn
−1)

πn
jn

(y′)dF (y′)

]n

+

∫ y∗

n(w)

y∗

n(wjn
−1)

[

1 −

∫ y∗

n(w)

y

πn
jn

(y′)dF (y′)

]n

∂v(w, y, x)

∂y
dy

That last two terms in this expression are derived by integrating by
parts. Now observe that a worker of type y∗n(wjn−1) is just indiffer-
ent between applying at the wage wjn−1 and being hired for sure, or
applying at wage w and being hired with probability

[

1 −

∫ y∗

n(w)

y∗

n(wjn
−1)

πn
jn

(y′)dF (y′)

]n−1

So substitute
wjn

−1

w
for this probability in the second term, and take

limits using the results of Lemma 7.4 to get
∫ y∗(w−)

y

v(w, y, x)k(y)
w−

w
e−

R y∗(w−)
y

k(y′)dF (y′)+

v(w, y∗(w), x)

(

1 −
w−

w

)

The first term follows from the bounded convergence theorem and
Lemma 7.3. The second term follows from the substitution made above,
and from the fact that y∗n(w) − y∗n(wjn−1) converges to zero with n (if
not, the probability of being hired at wage w for traders between y∗n(w)
and y∗n(wjn−1) goes to zero. The convergence of y∗n(w) − y∗n(wjn−1) to
zero also reduces the last term in the expansion to zero because the
derivative of v with respect to y is bounded (and the term multiplying
it is less than 1).

Now consider the case where w < w0. The firm’s profit is
∫ y∗

n(w)

y

v(w, y, x)d

[

1 −

∫ y∗

n(w)

y

πn
1 (y′)dF (y′)

]n

=

∫ y∗

n(w)

y

v(w, y, x)nπn
1 (y)

[

1 −

∫ y∗

n(w)

y

πn
1 (y′)dF (y′)

]n−1

F ′(y)dy =
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n

n− 1

∫ y∗

n(w)

y

v(w, y, x) (n− 1)πn
1 (y)

w0

w

[

1 −

∫ y∗

n(w0)

y

πn
1 (y′)dF (y′)

]n−1

F ′(y)dy

Now apply Lemmas 7.3 and 7.4 and use the bounded convergence the-
orem to take limits of this expression, yielding

∫ y(w)

y

v (w, y, x) τ
w1

w
e−

R y∗(w1)
y

τdF (y′)F ′ (y) dy

where y (w) is either y or the solution to

w0

w
e−

R y∗(w0)
y

τdF (y′) = 1

whichever is higher.
The last part of the argument is to show that

y∗(w) = sup{y : ω(y) ≤ w}

Suppose the contrary that for some w, y∗(w) > sup{y : ωn(y) ≤ w} =
y∗n(w) for all large n. Observe that for each n, ωn(y

∗
n(w)) ≥ w. Further-

more, note that a worker of type y∗n(w) has a type that is at least as high
as any other worker who applies at wage w. So such a worker is hired
for sure at wage w. Let y0 = limn→∞ sup{y : ωn(y) ≤ w} < y∗(w).

At the other extreme, if y∗(w) is not a continuity point of ω, then
since the latter function is right continuous and non-decreasing, there
is a point y0 < y1 < y∗(w) at which ω is continuous (and ω(y1) ≤ w).
For large n, it must be that ωn(y1) > w since otherwise y∗n(w) would
be at least as large as y1. Yet since y1 is a continuity point of ω and
ωn converges weakly to ω, ωn(y1) → ω(y1).

Then using Lemma 7.3, the payoff to a worker of type y∗n(w) who
applies at the wage ωn(y) is converging to

we
−

R y1
y0

k(y′)dF (y′)
< w

This contradicts the property that workers should receive the same
expected payoff by applying to all wages that are at least as large as
their reservation wage.

A similar argument establishes a contradiction when y0 = limn→∞ sup{y :
ωn(y) ≤ w} > y∗(w). �

7.5. Example. This appendix works out an example of a dispersed
wage equilibrium when all firms are identical. Suppose profit functions
given by

v (w, y, x) = y − w

It is assumed that F (y) = y (2 − y) on an interval [0, 1]. Then F ′ (y) =
2 − 2y.
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Then (14) becomes

y0 − w0 =

∫ y0

y

yτe−τ [F (y0)−F (y′)]dy′.

Integrating the second term by parts and using the fact that the lower
bound of the support is 0 gives the condition

(30) w0 =

∫ y0

y

e−τ(F (y0)−F (y′))dy′

which then represents the locus SS from Figure 4 in closed form. The
derivative of the right hand side of this condition is

1 − τ (2 − 2y0)

∫ y0

y

e−τ(F (y0)−F (y′))dy′

(31) = 1 − τ (2 − 2y0)w0

by (30). We return to this condition momentarily.
Now (12) can be written

v [ω (y) , y, h (y)] = −

∫ y

y

[

vw (ω (y) , y′, h (y)) −
v (ω (y) , y′, h (y))

ω (y)

]

ω′ (y′) dy′

y − ω (y) = −

∫ y

y

[

−1 −
y′ − ω (y)

ω (y)

]

ω′ (y′) dy′

or

(y − ω (y))ω (y) =

∫ y

y

y′ω′ (y′) dy′

Using the fact that this has to hold uniformly, the derivatives of both
sides of this equation must be the same, so

(y − ω (y))ω′ (y) + ω (y) (1 − ω′ (y)) = yω′ (y)

This gives the simple condition ω′ (y) = 1
2
. In terms of the ideas ex-

pressed in Figure 4, this means that all the potential solutions for (13)
are straight lines with slope equal to 1

2
. So ω (y) = w0 + 1

2
(y − y0).

The condition that ω′ (y0) = ω (y0) τF
′ (y0) at the starting point

for the equilibrium distribution then reduces to the requirement that
w0τ (2 − 2y0) = 1

2
. The locus of solutions to this equation (TT in

Figure 4) is upward sloping, has value 1
4τ

at y0 = 0 and derivative at

this point equal to 1
8τ

. This ensures that by taking τ large enough, we
can guarantee that this locus intersects the locus of solutions to (30)
at least once. It tends to infinity as y0 approaches 1. Since the locus of
solutions to (30) gives a finite wage when y0 = 1, there is a rightmost
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intersection point of the two loci TT and SS. This is the one used to
compute the solution.

Finally, note that at any intersection (y0, w0) of TT and SS, w0τ (2 − 2y0) =
1
2
. So the derivative of the locus SS must be equal to 1

2
by (31) derived

above. Now focus on the rightmost intersection of the two curves.
At any point (y, w) on SS to the right of the intersection with TT ,
wτ (2 − 2y) < 1

2
since TT lies above SS. That means that the deriva-

tive of SS is larger than 1
2

at every point to the right of this intersection.
At the rightmost intersection of TT and SS, the locus TT must then
cut SS from below. So the locus TT lies everywhere above the solution
curve ω (y) = w0 + 1

2
(y − y0). Since ω has slope 1

2
and we have just

established that the slope of SS is larger than 1
2

to the right of such an
intersection, it follows that the solution ω lies everywhere below both
SS and TT to the right of this intersection. So consider

G (w) = 1 − 2wτF ′ (2 (w − w0) + y0)

(32) = 1 − 2wτ (2 − 4 (w − w0) − 2y0)

Each pair (2 − 4 (w − w0) − 2y0, w) lies on the locus ω (y) = w0 +
1
2
(y − y0) to the right of y0. This locus is a straight line that lies

every where below the locus of solutions to wτ (y − y) = 1
2
. Since this

latter locus is convex, it follows that w2 > w1 implies

1

2
− w2τ (2 − 4 (w2 − w0) − 2y0) >

1

2
− w1τ (2 − 4 (w1 − w0) − 2y0)

or

w1τ (2 − 4 (w1 − w0) − 2y0) > w2τ (2 − 4 (w2 − w0) − 2y0)

It follows that the function (32) is increasing as required.
Finally, it is straightforward to verify that the function ω (y) below

y0 is a convex function, while firms iso expected profit lines to the left of
y0 are concave. This ensures that no deviation below w0 is profitable for
firms. The firm’s profit function for wages above ω (y) is readily shown
to be concave for large enough τ , so global optimality conditions can
be satisfied for this case.
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